

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA MECÂNICA ENGENHARIA MECÂNICA

Estágio Profissional

Projecção de Carrinho de Transporte de Tambor de Concentrado (caso da Refrigerantes Spar, 2021)

Supervisor: Prof. Doutor Eng. Inácio Arnaldo Lhate

Discente: ONIVA, Xavier José

Maputo, Março de 2022

Índice

Dedicate	ória	iii
Índice d	e Tabelas	iv
Índice d	e Figuras	iv
Lista de	Símbolos	v
1. Intr	odução	6
2. Obj	ectivo Geral	6
2.1.	Objectivos Específicos	6
3. Me	todologia	7
4. Apı	resentação Empresa Refrigerante Spar Lda	7
5. Dao	los de Partida do Projecto	7
6. Est	udo das Possíveis Soluções	8
6.1.	Analise das Alternativas	8
6.2.	Escolha da Alternativa Ideal	9
7. Esb	oço do Produto	10
8. Des	scrição do Produto	10
9. Esq	uema Cinemático	11
10. E	scolha do Materiais de Construção	11
11. C	Cálculo Projectivo	11
11.1.	Calculo Projectivo do Dispositivo de Sujeição	12
For	ça Actuante	12
Dia	grama do Corpo Livre	14
Res	ultado das Reacções	14
Dia	grama dos Esforços Internos do Dispositivo de Sujeição	15
Cálo	culo Projectivo do Elemento 5	15
Cálo	culo Projectivo do Elemento 4	16
Cálo	culo Projectivo do Elemento 2 inferior	16
Cálo	culo Projectivo do Elemento 2 Superior	17
Cálo	culo Projectivo do Elemento 1	17
Cálo	culo Projectivo do Elemento 3	17
Dimer	sões Projectadas do Dispositivo de Sujeição	19
11.2.	Cálculo Projectivo do Mecanismo de Elevação	20
Dim	ensões e Parâmetros de Funcionamento do Mecanismo de Elevação	20
Rea	cções dos Esforços no Mecanismo de Elevação	21
Diag	grama de Momentos Electores Internos do Mecanismo de Elevação	23

	Calculo Projectivo do Pino Superior	24
	Calculo Projectivo do Membro Superior	24
	Dimensionamento do Fuso	26
	Dimensionamento das Juntas	31
	Junta Roscada	32
	Junta Não Roscada	33
Di	mensões Calculadas do Mecanismo de Elevação	34
11	L.3. Calculo Projectivo da Estrutura	35
	Parâmetros Geométricos do Elementos da Estrutura	36
	Dimensões da Estrutura	37
	Diagrama do Corpo Livre da Estrutura	39
	Diagrama de Esforços Internos da Estrutura	40
Cá	álculo Projectivo dos Elementos da Estrutura	40
	Pilar	40
	Viga	41
	Membro Horizontal	41
Di	mensões Projectadas da Estrutura	41
11	L.4. Cálculo Projectivo dos Acessórios de Accionamento	43
Cá	álculo do Acoplamento	43
Cá	álculo Projecto da Manivela	44
12.	Calculo Testador	44
	Teste das Tensões do Carrinho de Transporte de Tambor de Concentrado por FEA	45
	Resultados do FEA	47
12	2.1. Analise de Tensão das Zonas Sobrecarregadas	48
	Dispositivo de sujeição	48
	Estrutura	49
12	2.2. Análise da Deformação do Carinho Mediante o Carregamento	51
	Deformação do Garfo	51
	Deformação do Membro Horizontal da Estrutura	52
12	2.3. Resultados de Diagramas Recalculados	52
	Diagrama de Tensões Equivalente Recalculado	52
	Diagrama de Deformação Recalculado	53
13.	Conclusão e Recomendações	54
14.	Bibliografia	55
15.	Anexos	56
16.	Apêndice	57

Dedicatória

Em primeiro lugar dedico essa obra de conclusão do curso de Licenciatura em Engenharia Mecânica a minha amada mãe Zaida Raúl Monteiro, em representação a toda a minha família consanguínea, que me obrigou a ir a escola, acreditou em mim e em nenhum momento desistiu de mim mesmo eu sendo relutante, usou de todas as suas forças para me sustentar nessa longa jornada estudantil; em segundo lugar dedico a minha família na fé em Cristo Jesus, representada na pessoa da pastor Maria do Carmo Cruz, que me acolheu, suportou e até hoje continua suportando, em todos os sentidos, destacando emocionalmente, espiritualmente e financeiramente na jornada da faculdade; em terceiro lugar dedico aos meus amigos e companheiros da jornada académica, representados por Engenheiro Pires Manuel João Gimo e Abel Benjamim Macarrão, que como irmãos, dividiram tudo o que tinham, até mesmo calçados, sem de mim esperar nada em troca não mediram esforços para cooperar comigo em todos sentidos; e em quarto e último lugar e igualmente importante dedico ao corpo docente da Faculdade de Engenharia da UEM e em especial do Departamento de Engenharia Mecânica (DEMA), representados por Engenheiro Inácio António Lhate, o meu supervisor nesta obra, e Engenheiro Júlio Domingos Mocomoque, chefe do Departamento de Engenharia Mecânica que com disciplina e postura, não só nos capacitaram, eu e os demais colegas, na parte técnica como também nos ensinaram a postura de um engenheiro.

iii

Índice de Tabelas	
Tabela 1: Parâmetros de projecto da carga	7
Tabela 2; Parâmetros de projecto do armazém do produto	
Tabela 3: Parâmetros de projecto do local de descarga do produto	
Tabela 4: Propriedades físicas e mecânicas do Aço SAE 1020	
Tabela 5: Resultado das reacções de apoio do diagrama de corpo livre do dispositivo de	
sujeição	14
Tabela 6: Parâmetros de algumas roscas trapezoidais de uma entrada segundo GOST 948	84-60
Índice de Figuras	
Figura 1: Esboço do projecto	10
Figura 2: Esquema Cinemático do Carrinho de Transporte de Tambor de Concentrado	
Figura 3: Esboço do dispositivo de sujeição	
Figura 4: Diagrama de corpo livre do dispositivo de sujeição	
Figura 5: Diagrama de momentos internos no dispositivo de sujeição	
Figura 6: Dimensões dos elementos projectados do dispositivo de sujeição	
Figura 7: Enumeração do mecanismo de elevação	
Figura 8: Diagrama do corpo livre do mecanismo de elevação	
Figura 9: Diagrama de momentos internos do mecanismo de Elevação (factor de escala la	
2 Nmm/mm e $Mx = 42.5 Nmm/mm$). Para os outos membros o diagrama de carregar	
é igual, exceptuando o membro 5 que não sofre flexão.	
Figura 10: Esquema de carregamento do pino	
Figura 11: Parâmetros geométricos do fuso, da junta não roscada e da roscada	
Figura 12:Diagrama de carregamento e de corpo livre da junta roscada	
Figura 13: Esboço da junta roscada para demonstração de δ	
Figura 14: Parâmetros da junta não roscada	
Figura 15: Dimensões do membro superior	
Figura 16: Esboço da estrutura do carrinho	
Figura 17: Diagrama do corpo livre da estrutura	
Figura 18: Diagrama de momentos flectores internos da estrutura	
Figura 19: dimensões projectadas do dispositivo de sujeição	
Figura 20: Arranjo esquemático do conjunto manivela e acoplamento ilustrando os princ	
parâmetros	•
Figura 21: visualização de dados de entrada do FEA	
Figura 22: diagrama de tensões de von Mises do carrinho	
Figura 23: Diagrama de tensões equivalente de von Mises do dispositivo de sujeição	
Figura 24: Diagrama de tensões de von Mises da estrutura	
Figura 25: Perfil C original a esquerda e perfil C obtido por dois perfis de abas iguais atr	
da soldadura a direita	
Figura 26: Diagrama de deformação do carrinho de transporte de concentrado	
Figura 27: Diagrama de tensões equivalentes recalculado do Carrinho de Transporte de	
Concentrado	52
Figura 28: Diagrama de deformação recalculado do Carrinho de Transporte de Concentr	
	53

Lista de Símbolos

N^o	Grandeza - legenda	Unidade
1	σ – a tensão de flexão	МРа
2	$[\sigma_{adm}]$ – a tensão admissível a flexão	МРа
3	σ_e – a tensão limite máxima de escoamento mediante a tracção pura	МРа
4	W – momento de resistência a flexão da secção	mm^3
5	[S] – o coeficiente de segurança	_
6	Q – massa da carga;	kg
7	g – aceleração de gravidade	m/s^2
8	F – força de peso da carga	N
9	l - comprimento	mm
10	b - comprimento	mm
11	R – reacção de força	N
12	V – força de cisalhamento	N
13	$[\tau]$ – tensão admissível ao cisalhamento	МРа
14	d – diâmetro	mm
15	H – altura	mm
	α – ângulo	° ou rad
	δ – espessura	mm
	e – largura da borda	mm
	b – largura da alma	mm
	b_0 – espessura da alma	mm
	h - altura da aba	mm
22	h_0 - espessura	mm
23	v – distancia do centro de gravidade em y	mm
24	P_{cr} - força crítica de compressão	N
25	l_{cr} – comprimento efectivo do eixo que sofre a carga axial	mm
26	C – constante de condição de carregamento da extremidade	_
27	E – modulo de elasticidade	GPa
28	p – passo de uma rosco	mm
29	A – área da secção transversal	mm^2
30	h - altura do ressalto	mm
31	T – momento torsor	Nmm
32	f – coeficiente de atrito entre as superfícies em contacto	_
33	R_m – raio médio do ressalto	mm
34	α – coeficiente da razão das dimensões do lado da secção	_
35	H – altura da porca	mm
36	z – número de espiras na porca	mm
37	l – largura	mm
38	c – comprimento	mm
39	h - altura	mm
40	heta – ângulo de torção	rad
41	G – modulo de rigidez a torção	МРа
41	J – é o momento polar de inercia	mm^4
42	σ_{eq} – tensão equivalente de von Miss	МРа

1. Introdução

A ideia de projectar o carrinho de transporte de concentrado para a empresa Refrigerante Spar Lda surge devido a necessidade de melhorar as condições actuais de transporte do mesmo em termos de segurança, flexibilidade e eficácia na execução dessa actividade que é realizado por um carro tartaruga hidráulico que apresenta as seguintes inconveniências observadas no local: carregamento e descarregamento para e do carro, respectivamente, feitos manualmente, impossibilidade de atravessar os degraus das salas o que exige que o transporte seja começado e concluído por força humana bruta.

Para a realização deste projecto foram colhidos dados de projecto no terreno tais como o tipo de carga, o peso da mesma, as dimensões das portas de acesso, altura dos degraus, a possibilidade de colocação sobre palete para transporte e mais que foram usados nos cálculos e tomada de decisões. O projecto foi realizado tendo em conta a disponibilidade dos materiais no mercado e os processos produtivos de que a empresa dispõe ou tem acesso de modo.

Como recurso para a projecção foi usado o programa de auxilio ao projecto (do inglês CAD) Inventor Professional 2017 na versão do estudante para desenhar e calcular (usando o método de elementos finitos), tendo os seus resultados transformados em imagens ilustrativas dos resultados de teste do modelo do carinho.

2. Objectivo Geral

Projectar carrinho de transporte de tambor de concentrado.

2.1. Objectivos Específicos

- 2.1.1. Apresentação da empresa;
- 2.1.2. Concepção preliminar do carrinho;
- 2.1.3. Escolha do material para construção do carrinho;
- 2.1.4. Cálculo projectivo dos elementos não normalizados do carrinho;
- 2.1.5. Cálculo testador dos elementos projectados.

3. Metodologia

A metodologia usada neste trabalho é do tipo prática iterativa que consiste em usar conhecimentos do cálculo de Resistência de Materiais, Órgãos de Máquinas, Materiais e recomendações técnica de normas na tomada de decisões para cálculo projectivo e selecção de componentes que são a seguir testado para atestar a sua qualidade, caso não satisfaça a exigências corrige-se a parte que falhou e repete-se o processo até que se alcance o resultado esperado.

4. Apresentação Empresa Refrigerante Spar Lda

A empresa Refrigerante Spar é uma industria alimentar de classe A que se dedica a produção de refrigerantes em lata (de 330 ml) das seguintes marcas: Coca-Cola, Coca Zero, Fanta Laranja, Fanta Ananás, Fanta Uva, Sparlleta, Creem Soda, Sprite, Água Tónica e Lemon Twist. Foi fundada no ano de 1999.

Localização: Av. do Trabalho, no 1958, Cidade de Maputo

Fluxo de produção: A empresa tem como produção mensal 160 000 caixas, cada caixa contem 4 conjuntos de latas com 6 latas em cada conjunto;

Tipo de implantação: A empresa tem uma implantação do tipo produto, como se pode visualizar através da planta da empresa que consta do anexo de A1.

Matéria prima para a produção: água, açúcar, concentrado, dióxido de carbono, latas de alumínio ou aço, cápsula(tampinhas), cartão, rolos de plástico, tinta e solvente, ar comprimido, palete e outros.

O fluxo da produção é mostrado através do Gráfico de Fluxo de Tipo Material que conta do anexo de A2

Organização administrativa: A empresa esta organizada em 4 sectores a saber: direcção, produção, qualidade e manutenção como se pode visualizar pelo organigrama nos A3.

A empresa trabalha normalmente em dois turnos (primeiro turno das 6:00 h às 14:00 h e segundo turno das 14:00 às 22 h), no Verão em três turnos (terceiro turno das 22:00 às 06:00h);

5. Dados de Partida do Projecto

Tambor

Tabela 1: Parâmetros de projecto da carga

Peso [N]	Diâmetro [mm]	Altura [mm]	
2500	600	970	

Câmara de Frio

Tabela 2; Parâmetros de projecto do armazém do produto

Largura da porta [mm]	Altura do degrau da porta [mm]	
1170	280	

Sala de Despejo

Tabela 3: Parâmetros de projecto do local de descarga do produto

Largura da porta [mm]	Altura do degrau da porta [mm]
900	50

Palete

Altura média: 150 mm.

Piso

Pavimentado

6. Estudo das Possíveis Soluções

Alternativa 1: Carrinho de duas rodas;

Alternativa 2: Carrinha de três rodas;

Alternativa 3: carrinho de quatro rodas;

6.1. Analise das Alternativas

Alternativa 1:

Vantagem: simplicidade estrutural, o que consequentemente facilita a produção e reduz o custo de produção;

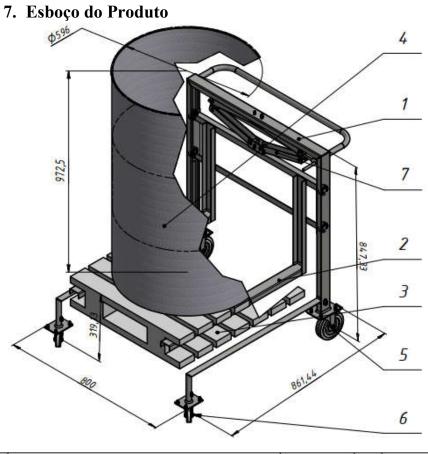
Desvantagem: uso de forca bruta humana na colocação da carga na posição de empurrar e no equilíbrio;

Alternativa 2

Vantagem: Fácil de manipular, relativa simplicidade estrutural comparado a alternativa 3;

Desvantagem: Instabilidade durante a movimentação devido má distribuição da carga entre os apoios, dispositivo de elevação complexo;

Alternativa 3


Vantagem: Boa estabilidade independentemente da distribuição da carga entre os apoios, facilidade de instalação do mecanismo de elevação;

Desvantagem: dimensões de gabarito maiores em comparação com as alternativas anteriores;

6.2. Escolha da Alternativa Ideal

Visto que o objectivo do projecto é reduzir o uso da força bruta humana ao nível que não crie fadiga e esgotamento físico, a alternativa 1 está automaticamente reprovada;

Olhando pela segurança e integridade física do operador do carrinho, a alternativa 2 apresenta riscos de derrubar a carga devido ao desequilíbrio criado por momentos durante a execução de curvas em movimento, sendo assim opta-se pela alternativa 3 que apesar de apresentar maiores dimensões de gabarito o que implica maior custo com os materiais, mas não necessariamente de produção e do projecto no geral.

ITEM	PART NUMBER	DESCRIPTION	aTY	COMMENTS
1	Estrutura soldada		1	
2	Dispositivo de sujeicao		1	
3	Palete)-	1	Ú.
4	tambor		1	P235 kg
5	Rodizio giratorio com bloqueio		2	Ø125
	Rodizio giratorio sem bloqueio		2	Ø58
	Mecanismo de elevacao		1	

Figura 1: Esboço do projecto

8. Descrição do Produto

O produto é um veiculo de elevação e transporte e é constituído por estrutura soldada apoiada em rodízios, um mecanismo de elevação (macaco mecânico) e dispositivo de sujeição da carga.

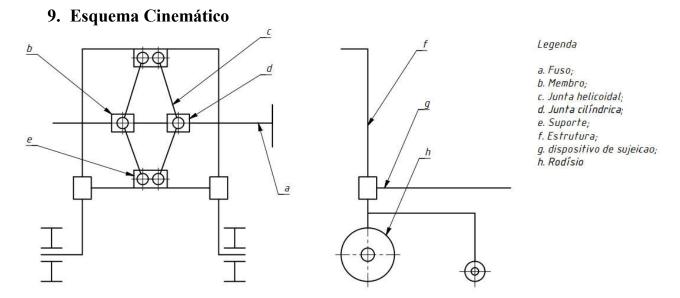


Figura 2: Esquema Cinemático do Carrinho de Transporte de Tambor de Concentrado

10. Escolha do Materiais de Construção

O material a usar para a construção deste projecto será aço doce SAE 1020 recozido com as seguintes características:

Tabela 4: Propriedades físicas e mecânicas do Aço SAE 1020

Parâmetro	Valor	unidade
Massa específica	7,850	g/cm ³
Limite de escoamento a tracção	210	МРа
Limite de resistência a tracção	345	МРа
Módulo de elasticidade	220	GPa
Coeficiente de Poisson	0,275	_

11. Cálculo Projectivo

O cálculo projectivo será realizado para elementos carregados não normalizados baseando-se na flexão para determinar a secção transversal dos elementos;

O cálculo iniciará com os elementos que estão em contacto directo com a carga de modo a facilitar o cálculo das reacções transmitidas a outros elementos.

A sequência do cálculo será a seguinte: definição do modelo matemático que mais se adequa ao carregamento, calculo dos esforços internos e aplicação da equacção de flexão para determinação das dimensões da secção transversal.

Para este calculo será usada a seguinte equação da flexão:

$$\sigma = \frac{[S] \times M}{W} \le [\sigma_{adm}] \tag{1}$$

Onde:

- M- é o momento flector, perpendicular ao eixo axial do elemento;
- W- é o momento de resistência axial da secção;
- σ_e é o limite de escoamento;
- [S] é o coeficiente de segurança, para materiais dúcteis é recomendado [S] = 1,5.

Nota:

As dimensões longitudinais, na sua maioria, são definidas pelas características inerentes ao produto, exceptuando algumas poucas que são limitadas pelas reacções resultantes nos elementos em virtude da sua dimensão longitudinal; as tais dimensões serão calculadas e justificadas sempre.

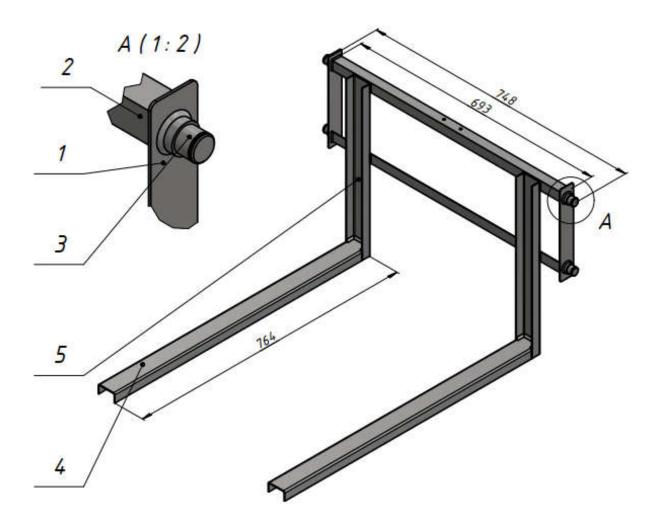
11.1. Calculo Projectivo do Dispositivo de Sujeição

De acordo com a figura 3, a carga assenta através do palete sobre o garfo horizontal (item 4), onde pode ser idealizada como uma carga distribuída superficialmente sobre pequenas áreas de contacto entre o palete e o garfo horizonta; como a largura do garfo horizontal é muito menor que o seu comprimento podemos considerar a carga como sendo linear sobre o eixo de simetria, a qual pode ser substituída por uma carga concentrada no centro;

Força Actuante

A força é o peso da caga da por:

$$F = Q \times g$$


$$F = 250 \times 9,81 = 2452,5.$$
(2)

Distancias entre Pontos de Aplicação de Forças e Reacções

 $l_{1-2} = 764 \, mm$, esta distancia é determinada pelas dimensões do palete que por sua vez é consequência das dimensões do tambor;

 $l_{2-3} - b = 190 \ mm$, esta distância é determinada graficamente do esboço, que vai desde o piso ao apoio A quando este se encontra no ponto morto inferior;

 $b = 200 \ mm$, a distância em causa é uma incógnita da qual dependem outras projecções, neste caso é tomada por conveniência o valor acima por questão prática e esta sujeita ao método iterativo.

ITEM	PART NUMBER	DESCRIPTION	QTY COMMENTS
1	Chapa		2
2	Cantoneira		2
3	Assento do rolamento		4
4	Garfo horizontal		2
5	Garfo vertical		2

Figura 3: Esboço do dispositivo de sujeição

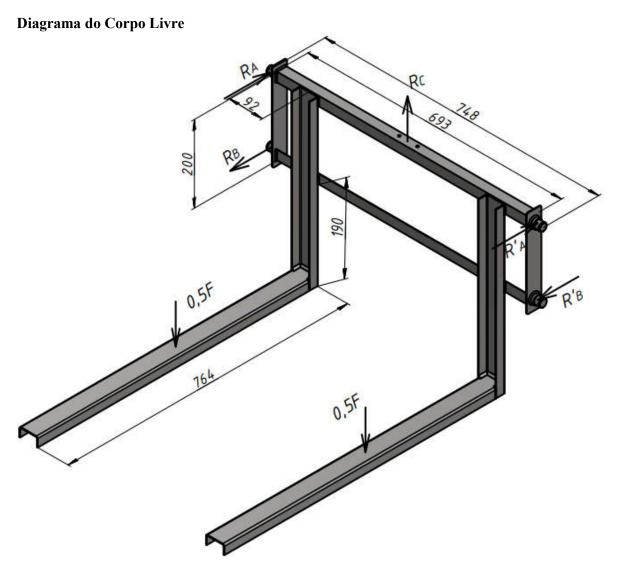


Figura 4: Diagrama de corpo livre do dispositivo de sujeição

Resultado das Reacções

Tabela 5: Resultado das reacções de apoio do diagrama de corpo livre do dispositivo de sujeição

Reacção	R_A	R_B	R'_A	R'_B	R_{C}
Valor [N]	2075	-2075	2075	-2075	2598

Diagrama dos Esforços Internos do Dispositivo de Sujeição

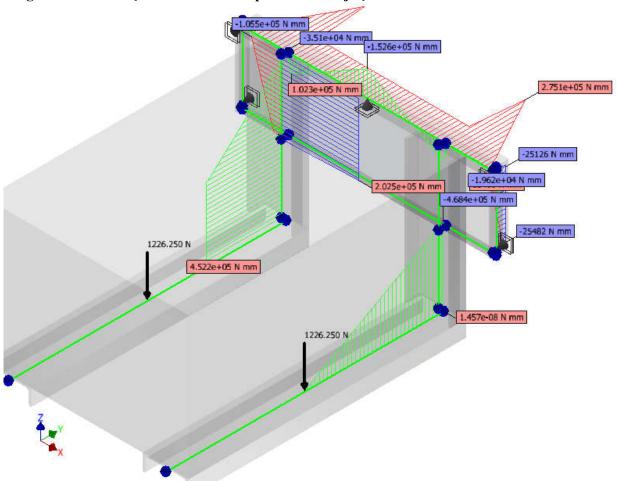


Figura 5: Diagrama de momentos internos no dispositivo de sujeição

Cálculo Projectivo do Elemento 5

Dados

Da figura 5: $M_{ym\acute{a}x} = -468.427,5 \, Nmm$

Escolha de Perfil: escolhe-se o perfil U devido as suas abas para resistir a flexão;

Cálculo do Módulo de Resistência a Flexão

Pela equacção (1) temos:
$$W_{cal} \ge \frac{[S] \times M_{ym\acute{a}x}}{[\sigma_e]} = \frac{1,5 \times 468.427,5}{210} = 3346 \ mm^3$$
.

Escolhe-se o perfil normalizado com o modulo de flexão imediatamente maior, neste caso escolhe-se o perfil DIN U 50 com $W_y=3750\ mm^3$

Cálculo Projectivo do Elemento 4

Dados

Da figura 5: podemos constatar que podemos efectuar uma soma algébrica entre os momentos z e x (representados pela cor azul e marom, respectivamente) e geométrica entre a resultante da soma algébrica e o momento em y; escolhe-se o ponto onde essa soma é máxima na intersecção entre o elemento 4 e 2 inferior: $M_{\nu} = 202500 \ Nmm$; $M_z = 452200 \ Nmm$.

$$M_{res} = \sqrt{M_z^2 + M_y^2}$$

$$M_{res} = \sqrt{452200^2 + 202500^2} = 495500 Nmm$$
(3)

Escolha de Perfil: escolhe-se o perfil U, a semelhança do membro 5 contiguo a este de modo a facilitar a ligação.

Cálculo do Módulo de Resistência a Flexão

Pela equacção (1) temos:
$$W_{cal} \ge \frac{[S] \times M_{res}}{[\sigma_a]} = \frac{1,5 \times 495500}{210} = 3539 \text{ mm}^3$$
.

Escolhe-se o perfil normalizado de [1] com o modulo de flexão imediatamente maior, neste caso escolhe-se o perfil UNP U 50 com $W_v = 3750 \ mm^3$

Cálculo Projectivo do Elemento 2 inferior

O carregamento do elemento 2 inferior é igual ao da direcção z do elemento 2 superior, só não está representado na figura 5 por falta de espaço suficiente para representação de todos os momento $M_z = 274100 \ Nmm$.

Escolha de Perfil: escolhe-se o perfil L de abas iguais, visto que agem sobre este elemento esforços transversais perpendiculares entre si, de modo que cada aba resista a cada um destes esforços.

Cálculo do Módulo de Resistência a Flexão

Pela equacção (1) temos:
$$W_{cal} \ge \frac{[S] \times M_{res}}{[\sigma_e]} = \frac{1,5 \times 274100}{210} = 1965 \text{ mm}^3$$
.

Escolhe-se de [1] o perfil normalizado com o módulo de flexão imediatamente maior, neste caso escolhe-se o perfil L NP 45x4 com $W_x=W_y=1970\ mm^3$

Cálculo Projectivo do Elemento 2 Superior

Da figuras 5: podemos constatar que o ponto de carregamento extremo tem: $M_z = 275100 \ Nmm$; $M_y = 102300 \ Nmm$, aqui a soma dos momentos é relevante visto que o seu resultado, portanto, pela equação (3), temos: $M_{res} = \sqrt{275100^2 + 102300^2} = 293505 \ Nmm$

Escolha de Perfil: escolhe-se o perfil L de abas iguais a semelhança do membro 2 inferior.

Cálculo do Módulo de Resistência a Flexão

Pela equacção (1) temos:
$$W_{cal} \ge \frac{[S] \times M_{x,m\acute{a}x}}{[\sigma_e]} = \frac{1,5 \times 293505}{210} = 2096 \ mm^3$$
.

Escolhe-se o perfil normalizado com o modulo de flexão imediatamente maior, neste caso escolhe-se o perfil L NP 45x5 com $W_x=W_y=2430\ mm^3$

Cálculo Projectivo do Elemento 1

Da figura 4 constata-se que o ponto mais o carregado é o extremo inferior onde os momentos x e z se adicionam o $M_{xm\acute{a}x}=25482~Nmm;~M_y=7416~Nmm;~M_{zm\acute{a}x}=25126~Nmm.$ O momento y é muito menor em relação aos outros por isso será desprezado.

$$M_{m\acute{a}x} = M_{x,m\acute{a}x} + M_{y,m\acute{a}x} = 25482 + 25126 = 50608 Nmm$$

Escolha de Perfil: Barra rectangular.

Cálculo do Módulo de Resistência a Flexão

Pela equação (1) temos:
$$W_{cal} \ge \frac{|S| \times M_{máx}}{|\sigma_e|} = \frac{1.5 \times 50608}{210} = 362 \text{ mm}^3$$
.

Escolhe-se de [1] o perfil normalizado com o modulo de flexão imediatamente maior, neste caso escolhe-se o perfil de barra rectangular da norma NP-338 com secção transversal 20x5 e módulo de flexão $W_x = 333 \ mm^3$.

Cálculo Projectivo do Elemento 3

Resistência ao cisalhamento

Usa-se da equação (7.3) de [2] para o valor máximo de tensão de cisalhamento ($\tau_{máx}$) de uma secção circular, para limitar a tensão admissível.

Pela equação (4) de cisalhamento puro, isola-se o diâmetro e obtém-se a equação (5) e a força de corte que é multiplicada pelo coeficiente de segurança como demostra a equação (6).

$$[\tau] \ge \frac{16V}{3\pi d^2} \tag{4}$$

$$d \ge \sqrt{\frac{16V}{3\pi[\tau]}} \tag{5}$$

$$V = [S] \times R_A \tag{6}$$

Onde:

- V é o esforço interno de cisalhamento;
- $[\tau]$ é a tensão admissível ao cisalhamento

Segundo as equações acima temos:

$$d \ge \sqrt{\frac{16 \times 3113}{3\pi \times 105}} = 7 \ mm$$
; onde: $V = 1.5 \times 2075 = 3113 \ N$

Dimensões Projectadas do Dispositivo de Sujeição

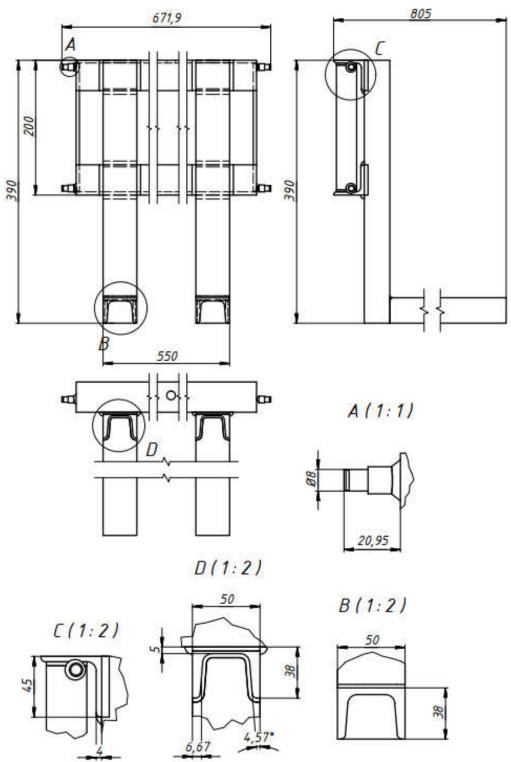


Figura 6: Dimensões dos elementos projectados do dispositivo de sujeição

11.2. Cálculo Projectivo do Mecanismo de Elevação 8 5 3 6 1 ITEM PART NUMBER DESCRIPTION aTY COMMENTS Suporte inferior 1 1 Suporte superior 2 3 Membro inferior 2 Junta Membro superior 2 Fuso 1 6 Pino inferior 2 2 Pino superior

O cálculo projectivo será realizado para o membro superior, os pinos, o fuso e o braço; os demais elementos, as dimensões das suas secções transversais estão relacionadas com o membro superior e são maiores que as deste, por isso resistirão aos esforços máximos se este resistir.

1

O dimensionado dos elementos será a flexão para o membro superior, ao cisalhamento para os pinos e o braço e a tracção par o fuso.

Dimensões e Parâmetros de Funcionamento do Mecanismo de Elevação

Altura Máxima de Elevação

braco

Figura 7: Enumeração do mecanismo de elevação

$$H_{\text{elev,máx}} = 1.2 \times (H_{degrau} + H_{palete})$$
 (7)

 H_{degrau} – é a altura do degrau da camara frigorífica (280 mm);

 H_{palete} é a altura da palete (150 mm);

Nota: o 20% a mais na soma corresponde a folga entre o degrau e a palete levantada.

$$H_{\text{elev,máx}} = 1.2 \times (280 + 150) = 516 \, mm$$

Reacções dos Esforços no Mecanismo de Elevação

Da figura 6 abaixo temos, tomando em conta que $l_1=\ l_2=\ l_3=\ l_4=l$:

Nó A
$$\sum F = 0$$

$$\uparrow^+: F + (R_1 + R_3) \sin \alpha = 0;$$

$$\rightarrow$$
⁺: $R_1 \cos \alpha - R_3 \cos \alpha = 0$;

$$\leftrightarrow R_1 = \frac{-F}{2\sin\alpha}.$$

Pela simetria no nó C temos: $R_2 = \frac{-F}{2 \sin \alpha}$.

Nó B
$$\sum F = 0$$

$$\rightarrow^+$$
: $R_5 - (R'_1 + R'_2) \cos \alpha = 0$;

$$R'_1 = -R_1 = \frac{F}{2\sin\alpha}; \ R'_2 = -R_2 = \frac{F}{2\sin\alpha};$$

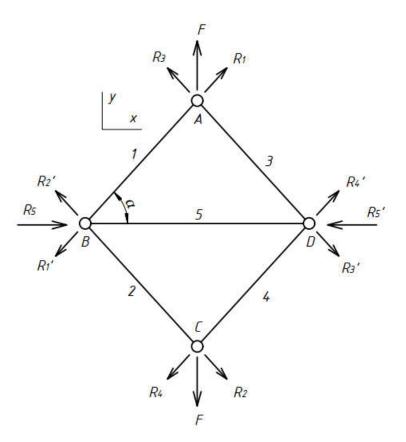


Figura 8: Diagrama do corpo livre do mecanismo de elevação

$$\leftrightarrow R_5 = \frac{2F\cos\alpha}{2\sin\alpha} = F\cot\alpha. \tag{8}$$

Na equação (8) acima quando $\lim_{\alpha\to 0}R_5(\alpha)=573\times F$, o que faz com que haja necessidade de limitar o ângulo mínimo; para $\alpha=15^\circ$; cot $15^\circ=3,732$ que é um valor aceitável; assim a reacção de força no membro 5 será: $R_5=3,732\times F$;

$$R_5 = 3,732 \times F$$

 $R_5 = 3,732 \times 2452,5 = 9152,73 N.$ (9)

Comprimento dos Membros

Da figura 8 e usando as razoes trigonométricas, temos:

$$H_{(\alpha)} = 2l\sin\alpha \tag{10}$$

$$l_{5(\alpha)} = 2l\cos\alpha \tag{11}$$

Nota: os limites são $15^{\circ} \le \alpha \le 75^{\circ}$

Para a elevação da carga a altura máxima é necessário que $H_{(\alpha=75^\circ)}=H_{\rm elev,máx}$, então teremos da equação (10):

$$l = \frac{H_{\text{elev,máx}}}{2 \sin 75^{\circ}}$$

$$l = \frac{516}{2 \sin 75^{\circ}} = 267,1 \approx 268 \text{ mm}$$

$$l_{5máx} = l_{5(\alpha=15^{\circ})} = 2 \times 268 \times \cos 15^{\circ} = 517,7 \approx 518 \text{ mm}$$
(12)

Diagrama de Momentos Flectores Internos do Mecanismo de Elevação

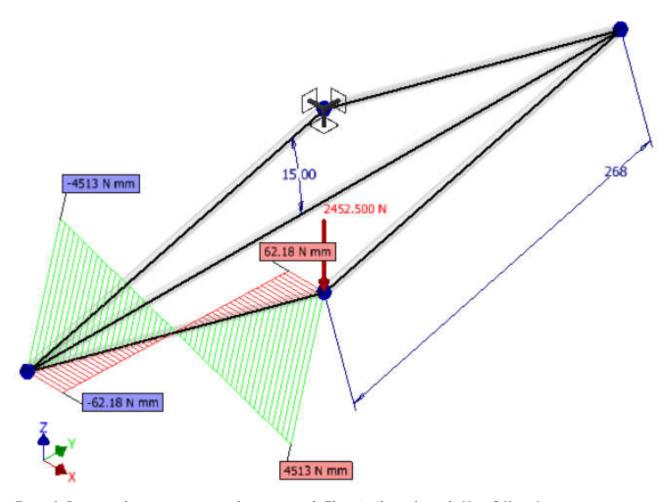


Figura 9: Diagrama de momentos internos do mecanismo de Elevação (factor de escala $M_x=2$ Nmm/mm e $M_x=42,5$ Nmm/mm). Para os outos membros o diagrama de carregamento é igual, exceptuando o membro 5 que não sofre flexão.

Calculo Projectivo do Pino Superior

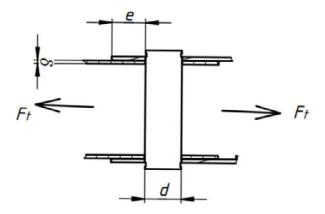


Figura 10: Esquema de carregamento do pino

Da equação (5) calcula-se o diâmetro do pino como se segue:

$$d = \sqrt{\frac{16 \times 3432,3}{3\pi \times 105}} = 7,45 \cong 7,5 \ mm$$

Onde:

 $V = \frac{R_5}{4} \times [s] = \frac{9152,73}{4} \times 1,5 = 3432,3 N$; o cociente 4 é pelo facto de haverem dois pinos que compartilham a carga total e cada pino suporta metade da parte da carga recebida por cada extremidade.

Calculo Projectivo do Membro Superior

Pela figura 10 onde o membro superior entra em contacto com o pino superior, extraem-se as equações para o projecto deste.

Espessura (δ) do Membro Superior

Usa-se a equação (3) de [3] seguinte para calcular a espessura mínima:

$$\sigma_{esm} = \frac{v}{\delta d} \le [\sigma_{esm}] \tag{13}$$

$$\delta = \frac{F}{[\sigma_{esm}] \times d} \tag{14}$$

$$\delta = \frac{F}{[\sigma_{esm}] \times d} = \frac{3432,3}{210 \times 7,5} = 2,18 \ mm$$

Toma-se a chapa de espessura $\delta = 2,25 \text{ }mm$;

Borda (e) do Membro Superior

Pela definição da tensão de cisalhamento, temos a seguinte expressão:

$$\tau = \frac{F}{ed} \le [\tau] \tag{14}$$

$$e \ge \frac{F}{|\tau|d} \tag{15}$$

$$e \ge \frac{3432,3}{105 \times 7,5} = 4,36 \ mm;$$

Segundo recomendações técnicas de construção, esta tem sido tomada igual a $1.5 \times d$, mas para este caso será tomado igual a d = 7.5 mm;

Dimensões da Secção Transversal do Membro Superior

Pela figura 10 temos: $M_{m\acute{a}x} = 4513 \ Nmm$

Tipo de perfil do membro: perfil C;

Cálculo do Módulo de Resistência a Flexão

ela equacção (1) temos:
$$W_{cal} \ge \frac{[S] \times M_{m\acute{a}x}}{[\sigma_e]} = \frac{1,5 \times 4513}{210} = 32,2 \ mm^3$$

Para secção C o modulo de resistência a flexão é dado, segundo [tabelas técnicas], por:

$$w = \frac{I_{x}}{h-v} = \frac{\frac{1}{3} \left[2b_{0}h^{3} + (b-2b_{0})h_{0}^{3} \right] - \left[2b_{0}h^{3} + h_{0}(b-2b_{0}) \left[\frac{2b_{0}h^{2} + (b-2b_{0})h_{0}^{2}}{2(2b_{0}h + (b-2b_{0})h_{0})} \right]^{2} \right]}{h - \frac{2b_{0}h^{2} + (b-2b_{0})h_{0}^{2}}{2(2b_{0}h + (b-2b_{0})h_{0})}} = (16)$$

 W_{cal}

Onde: $b - \acute{e}$ a largura da alma;

h - é a altura da aba;

 b_0 , h_0 – são a espessura da alma e da aba, respectivamente;

v – é a distancia do centro de gravidade em y.

Escolhe-se a relação entre a largura e altura de:

$$\frac{b}{h} = \frac{3}{5}$$

$$b_0 = h_0 = 2,25 \text{ mm para fabricar este membro;}$$
(17)

Pela equacção (16) substituímos o b, b_0 e h_0 e resolvemos em função a h, teremos: $h = 6.6 \, mm$;

E pela equaçção (17) b = 3.9 mm.

Nota: esta secção é infirma comparada os demais elementos, portanto as dimensões dependerão das da Junta (peça 4).

Dimensionamento do Fuso

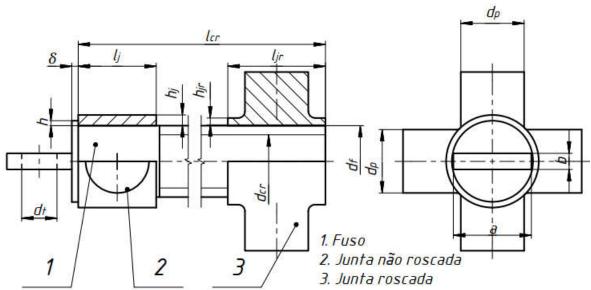


Figura 11: Parâmetros geométricos do fuso, da junta não roscada e da roscada

O fuso sofre tracção, compressão e torsão; tracção e torsão simultaneamente durante o içamento, compressão em repouso e compressão e torsão simultânea durante o abaixamento da carga;

Diâmetro da Secção Carregada

O dimensionamento será feito a compressão por ser a situação mais crítica pois há risco de flambagem;

Usa-se a equação (4.50) de [4] que segue para determinar o diâmetro que pode resistir a flambagem do fuso mediante a carga aplicada:

$$d = 2 \times \sqrt{\frac{P_{cr}}{\pi \sigma_e} + \frac{\sigma_e \times l_{cr}^2}{\pi^2 CE}}$$
 (18)

Onde:

 P_{cr} - é a carga crítica de compressão a plicada ao eixo do elemento (igual R_5 ,tendo em conta o coeficiente de segurança, claro);

 l_{cr} – é o comprimento efectivo do eixo que sofre a carga axial;

 $C - \acute{e}$ a constante de condição de extremidade, da tabela 4-2 de [4]

 $E - \acute{e}$ o modulo de elasticidade ($E = 210 \; GPa$)

$$l_{cr} = l_{5m\acute{a}x} + 0.5(l_i + l_{jr}) \tag{19}$$

Onde

 l_i – é o comprimento da junta roscada;

 l_{ir} – é o comprimento da junta não roscada;

 l_j e l_{jr} são grandezas que dependem do diâmetro do fuso que por sua vez depende também do l_{cr} ; então arbitram-se o valores de 40 mm para cada uma.

Substituindo os dados nas expressões acima temos:

$$P_{cr} = 1.5 \times 9152,73 = 13729,1 N;$$

$$l_{cr} = 518 + 0.5(40 + 40) = 558 \, mm.$$

$$d_{cr} = 2 \times \sqrt{\frac{13729,1}{\pi \times 210 \times 10^6} + \frac{210 \times 10^6 \times 0,558^2}{\pi^2 \times 1,2 \times 210 \times 10^9}} = 1,428 \times 10^{-2} \, m = 14,28 \, mm$$

Selecção da Rosca

De acordo com [4], folha 28 seleccionam-se roscas com diâmetro da raiz mais próximo de d_{cr} e imediatamente maior de acordo com a tabela 1.

Tabela 6: Parâmetros de algumas roscas trapezoidais de uma entrada segundo GOST 9484-60

Referencia	Diâmetro externo (d), mm	Passo (p), mm	Diâmetro da raiz (d_1) , mm
TRAP 18×2	18	2	15,5
TRAP 18×3	18	3	14,5
TRAP 20×4	20	4	15,5
TRAP 24×8	24	8	15,5

Escolhe-se a rosca TRAP 24 × 8 por ter maior passo.

Ressalto do Fuso

O dimensionamento é feito à resistência ao esmagamento de modo a determinar a altura (h) e ao cisalhamento para determinar a espessura (δ) do ressalto.

Altura do Ressalto (h)

$$\sigma = \frac{F}{A} \le [\sigma_{esm}] \tag{20}$$

$$A = \frac{\pi(2d_f h + h^2)}{4} \tag{21}$$

Onde: A é a área transversal do colar;

Resolvendo a equação (24) para h, temos:

$$\frac{4 \times 13729,1}{\pi(2 \times 24 \times h + h^2)} \le 210; \leftrightarrow h \ge 1,68 \ mm$$

Normalizando este valor toma-se h = 1,7 mm;

Onde: $F = P_{cr} = 13729,1 N$.

Espessura do Ressalto (δ)

$$\tau = \frac{F}{A} \le [\tau] \tag{22}$$

$$A = \pi d_f \times \delta \tag{23}$$

Substituindo a equação (23) na (22) e resolvendo para δ , temos:

$$\delta = \frac{13729,1}{\pi \times 24 \times 105} = 1,73 \ mm$$

Normalizando este valor toma-se $\delta = 1.8 \ mm$;

Elemento de Transmissão do Torque ao Fuso

O dimensionamento deste elemento será feito ao cisalhamento, mas, por enquanto, deve se determinar o diâmetro do furo que o fragiliza.

Diâmetro do Furo no Elemento de Transmissão de Torque

Para o dimensionamento do furo será primeiro necessário determinar o diâmetro do braço que conjuga com este; através da fórmula de torção seguinte, determina-se o diâmetro do braço de manivela (d_h) :

$$\tau = \frac{16T}{\pi d_h^3} \ge [\tau] \tag{24}$$

$$d_b = \sqrt[3]{\frac{16T}{\pi[\tau]}} \tag{25}$$

Onde:

T – é o momento torsor e determinado da seguinte maneira;

Determinação do Momento Torsor

O momento torsor para elevar e abaixar a carga resulta do momento na rosca e na face do ressalto no fuso.

Momento Torsor na Rosca

Das equações (8-1) e (8-2) de [4], dadas a seguir:

$$T_R = \frac{Fd_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - fl} \right) \tag{25}$$

$$T_L = \frac{Fd_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + fl} \right) \tag{26}$$

Onde:

 T_R – é o momento torsor de levantamento da carga considerando apenas a rosca;

 T_L – é o momento torsor de abaixamento da carga, também, considerando apenas a rosca;

 d_m – é o diâmetro médio da rosca, também designado diâmetro de passo (d_m = 19,868 mm, de tabelas de rosca trapezoidal);

 $F - \acute{e}$ a forca axial no parafuso;

 $l-\acute{\rm e}$ o avanço da rosca, igual ao passo para o caso de rosca de uma entrada, e;

f – é o coeficiente de atrito entre as superfícies em contacto; para o par de contacto aço-aço com lubrificação f = 0,16 (tabela 8-5 de [4]).

Momento Torsor na Face do Ressalto do Fuso

Da equação (ros 4) de [6] para o momento torsor na face do ressalto dadas a seguir:

$$T_f = F \times f \times R_m = F \times f \times \frac{d_f + h}{2} \tag{27}$$

Onde: R_m – é o raio do eixo do fuso ao ponto médio do ressalto;

Através das equações (25), (26) e (27) estabelecessem-se as equações globais do momento torsor para elevar e abaixar a carga, como se segue:

$$T_{GR} = F\left[\frac{d_m}{2} \left(\frac{l + \pi f d_m}{\pi d_m - f l}\right) + f \times \frac{d_f + h}{2}\right]$$
(28)

$$T_{GL} = F\left[\frac{d_m}{2} \left(\frac{\pi f d_m - l}{\pi d_m + fl}\right) + f \times \frac{d_f + h}{2}\right]$$
(29)

Resolvendo as equações (28) e (29) para momento global de elevação e abaixamento da carga, respectivamente, temos:

$$T_{GR} = 13729,1 \left[\frac{19,868}{2} \left(\frac{8 + \pi \times 0,16 \times 19,868}{\pi \times 19,868 - 0,16 \times 8} \right) + 0,16 \times \frac{24 + 1,7}{2} \right] = 68351,9 \ Nmm$$

$$T_{GL} = 13729,1 \left[\frac{19,868}{2} \left(\frac{\pi \times 0,16 \times 19,868 - 8}{\pi \times 19,868 + 0,16 \times 8} \right) + 0,16 \times \frac{24 + 1,7}{2} \right] = 32480,9 \ Nmm$$

Como se pode constatar dos resultados acima, o momento de elevação é maior que o de abaixamento da carga, por isso será usado o momento de elevação da carga para os cálculos consequentes.

Da equação (25) calcula-se o diâmetro do braço

$$d_b = \sqrt[3]{\frac{16 \times 68351,9}{\pi \times 105}} = 14,91 \ mm \cong 15 \ mm$$

Diâmetro do Furo

O diâmetro do furo (d_t) será tomado um pouco maior que o diâmetro do braço de manivela (d_b) de modo a garantir o ajustamento livre como:

$$d_t = d_b + 0.5; [mm]$$
 (30)
 $d_t = 15 + 0.5 = 15.5 mm$

Dimensões da Secção do Elemento de Torção

Como o Elemento de Torção é prismático usa-se a expressão de Saint Venant dada a seguir

$$\tau_{m\acute{a}x} = \frac{T}{\alpha h c^2} \le [\tau] \tag{31}$$

Onde: $b - \acute{e}$ o lado maior (correspondente a a na figura 9), aqui por causa do diâmetro do furo que o fragiliza, será tomado um valor (b') que toma em conta esta fragilização, como:

$$b' = b - d_t \tag{32}$$

c – é o lado menor, neste caso correspondente a b, na figura 11;

 α – é um coeficiente que é função da razão $\frac{b}{c}$, dado na tabela não referenciada de [4] na página 123;

A razão $\frac{b'}{c}$ é arbitra da igual a 1 e retira-se da tabela o coeficiente $\alpha = 0.208$.

Substituindo a razão do paragrafo acima na equação (32) e isolando o a grandeza b e substituindo na equação (31) e resolvendo para c temos:

$$c^2(c+d_t) \ge \frac{T}{\alpha[\tau]} \tag{33}$$

$$c^2(c+15,5) \ge \frac{68351,9}{0,208\times 105} \leftrightarrow c \ge 10,89 \cong 11 \text{ mm}; \quad b = 11 + 15,5 = 26,5 \text{ mm};$$

Dimensionamento das Juntas

Carregamento

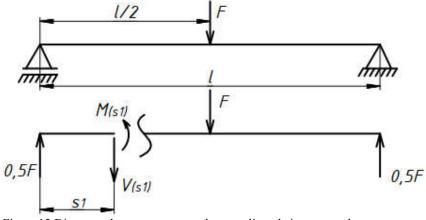


Figura 12:Diagrama de carregamento e de corpo livre da junta roscada

$$M_{(s_1)} = 0.5F \times s_1$$
 $\left(0 \dots \frac{l}{2}\right)$ (34)
 $V_{(s_1)} = -0.5F$ $\left(0 \dots \frac{l}{2}\right)$

Junta Roscada

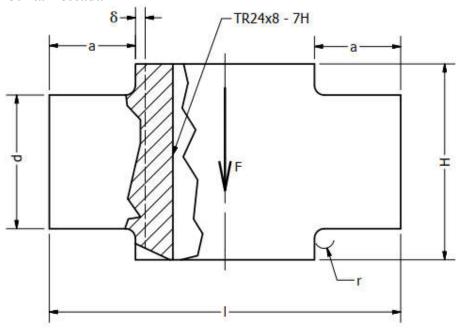


Figura 13: Esboço da junta roscada para demonstração de δ

Altura da Porca

A altura da porca é relacionada pelo número de espiras (z) e passo (p) pela seguintes equações:

$$H = z \times p \tag{36}$$

O numero de espiras (z) é tomado igual a z=6, pois da prática tem se verificado que a sétimas espira não recebe carga;

$$H = 6 \times 8 = 48 \ mm;$$

Espessura do Cilindro Roscado

Para calcular o δ usa-se a condição de resistência ao cisalhamento da zona do centro do cilindro roscado, dada pela seguinte equação:

$$\tau = \frac{F}{2 \times A} \tag{37}$$

$$A = H \times \delta \tag{38}$$

Substituímos a equações (38) em (37) e resolvemos para δ , como se segue:

$$\delta = \frac{F}{2 \times H \times \tau} \tag{39}$$

$$\delta = \frac{13729,1}{2\times48\times105} = 1,36 \cong 1,5 \ mm$$

Diâmetro dos Pinos

O diâmetro deste pino é duas vezes maior que os pinos superiores e inferiores, pelo facto de a força de cisalhamento ser metade da reacção 5.

$$d = 15 \ mm;$$

Junta Não Roscada

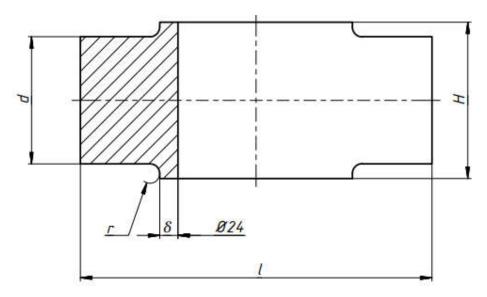


Figura 14: Parâmetros da junta não roscada

Altura da Junta

A altura da junta (H) é tomada igual ao diâmetro da superfície que conjuga com o parafuso: $H = 24 \ mm$.

Espessura do Cilindro Roscado

Pela equação (39) determina-se δ

$$\delta = \frac{13729,1}{2\times24\times105} = 2,72 \cong 2,8 \ mm$$

Determinação do Diâmetro dos Pinos

O diâmetro destes pinos é igual ao diâmetro dos pinos da junta roscada: d = 15 mm;

Comprimento do Pino

O comprimento do pino é tomado igual ao diâmetro da maior junta mais alguns milímetros para garantir o encosto, segundo a expressão abaixo:

$$l = D + 2 \times (3mm) \tag{40}$$

O maior diâmetro é da junta não roscada, igual a:

$$D = d_{INR} + 2\delta_{INR} \tag{41}$$

Onde: $d_{JNR},\,\delta_{JNR}$ — são os diâmetro e espessura da junta não roscada.

$$D = 24 + 2 \times 2.8 = 29.6 \, mm$$

$$l = 29.6 + 2 \times (3mm) = 35.6 \cong 36 mm;$$

Dimensões Calculadas do Mecanismo de Elevação

A dimensão de referencia é a do comprimento da junta maior (de 36 mm) que corresponde ao comprimento interno da alma e a altura das abas é tomada metade desta dimensão.

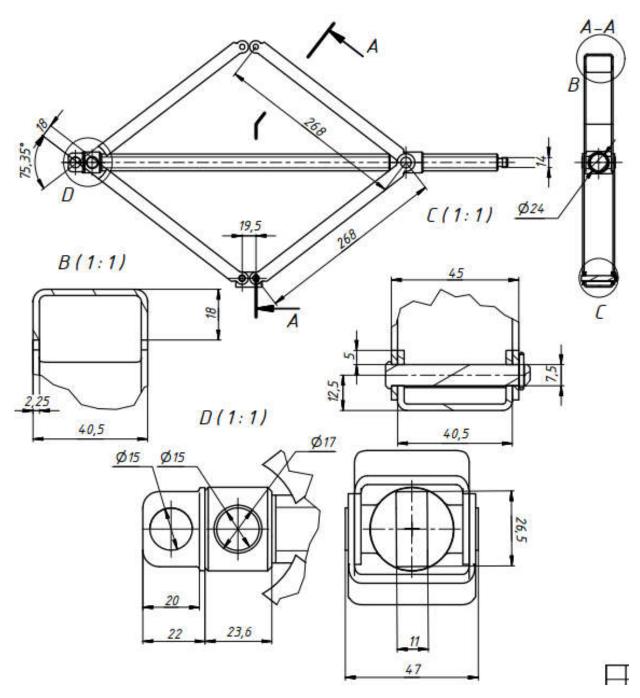
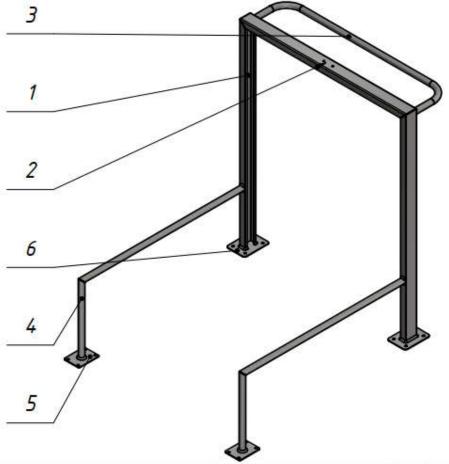



Figura 15: Dimensões do membro superior

11.3. Calculo Projectivo da Estrutura

ITEM	PART NUMBER	DESCRIPTION	QTY	COMMENTS
1	Pilar		2	Perfil U
2	Viga		1	Perfil U
3	Corrima		1	
4	Mebro horizontal		2	Perfil Circular
5	Placa de rodizio com bloqueio		2	
6	Placa de rodizio sem bloqueio		2	

Figura 16: Esboço da estrutura do carrinho

Parâmetros Geométricos do Elementos da Estrutura

Rodízios Giratórios da marca BS Rollen

Com bloqueio, referencia: LS420.B63.125:

Altura: 155 mm;

Comprimento/Largura: $115 \times 85 \, mm$.

Sem bloqueio, referencia: L400.A90.58:

Altura: 83 mm;

Comprimento/Largura: $93 \times 70 \ mm$;

Dispositivo de Sujeição

Altura: 400 mm;

Largura: 748 mm;

Comprimento: 800 mm.

Mecanismo de Elevação

Altura: 586 mm.

Palete

Comprimento: c = 700 mm;

Largura: l = 614 mm;

Altura: h = 140 mm

Degrau da porta do frigorifico

Altura: h = 280 mm

Dimensões da Estrutura

Altura

$$h = h_{Suj} + h_{Mec} - h_{Rod}$$
 (35)
Onde: h_{Suj} – é a altura do dispositivo de sujeição;

 h_{Mec} – é a altura máxima do mecanismo de elevação;

 h_{Rod} – é a altura do rodízio.

Pela equação (35), substituindo os valores dados tem-se:

 $h = 400 + 586 - 155 = 831 \, mm$.

Largura

A largura é tomada aproximadamente a do dispositivo de sujeição: l = 750 mm;

Comprimento

$$l = l_{pal} + 0.5(l_{RB} + l_{RSB})$$
Onde: l_{pal} – é o comprimento da palete; (36)

 l_{RB} , l_{RSB} – são comprimentos dos rodízios com bloqueio e sem bloqueio, respectivamente;

Substituindo os respectivos valores na equação (36) temos: l = 700 + 0.5(115 + 93) = 804 mm.

Altura do membro horizontal

$$h = h_{deg} - h_{RSB} + 50$$
 (42)
Onde: $h_{deg} - \acute{e}$ a altura do degrau;

 h_{RSB} – é a altura do rodízio sem bloqueio;

O valor numérico de 50 mm é para garantir a folga entre este membro e o degrau.

Substituído os valores na expressa da equação (37) temos: $h = 280 - 83 + 50 = 247 \, mm$.

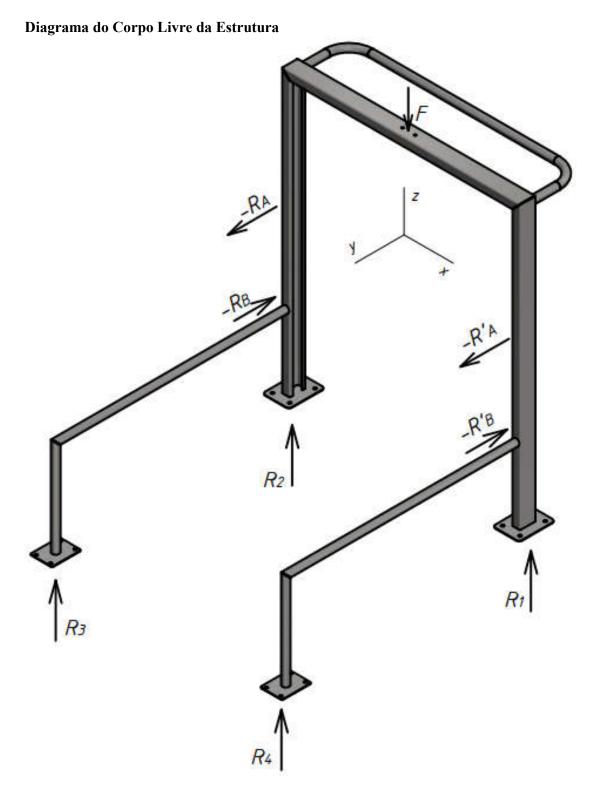


Figura 17: Diagrama do corpo livre da estrutura

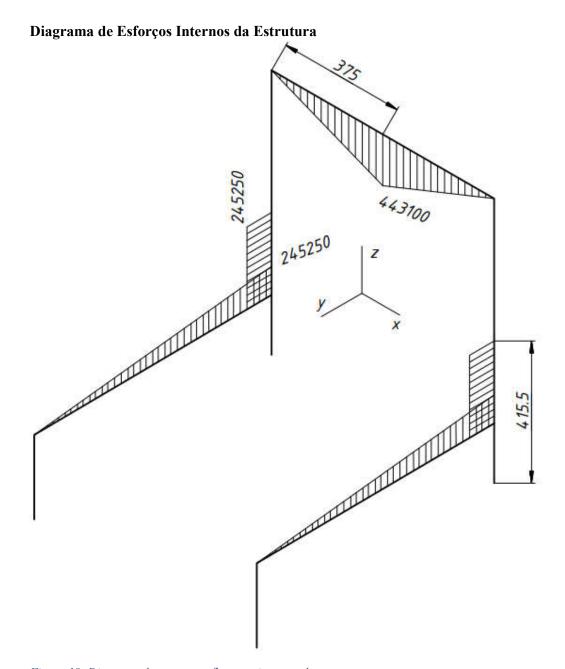


Figura 18: Diagrama de momentos flectores internos da estrutura

Cálculo Projectivo dos Elementos da Estrutura

É usada a equação (1) para estimar o modulo de resistência a flexão e a seguir determinara a secção adequada ao elemento em causa.

Pilar

Tipo de perfil: perfil U laminado a quente

 $W_x \ge \frac{[S] \times M}{[\sigma_{adm}]} = \frac{1.5 \times 245250}{210} = 1752 \text{ mm}^3$, escolhe-se de [1] o perfil *UNP* 40a com modulo de resistência a flexão em x - x igual a 3790 mm³.

Viga

Tipo de perfil: perfil U laminado a quente

 $W_y \ge \frac{[S] \times M}{[\sigma_{adm}]} = \frac{1.5 \times 443100}{210} = 3165 \text{ mm}^3$, escolhe-se o perfil de [1] *UNP* 50 com modulo de resistência a flexão em y - y igual a 3750 mm^3 .

Nota: para questões de uniformização, este perfil (UNP 50) é usado também para o pilar.

Membro Horizontal

Tipo de perfil: perfil oco de secção circular

 $W \ge \frac{[S] \times M}{[\sigma_{adm}]} = \frac{1,5 \times 245250}{210} = 1752 \ mm^3$, escolhe-se de [1] o perfil oco de secção circular de diâmetro externo de Ø33,7 com modulo de resistência a flexão em igual a 1840 mm^3 .

Dimensões Projectadas da Estrutura

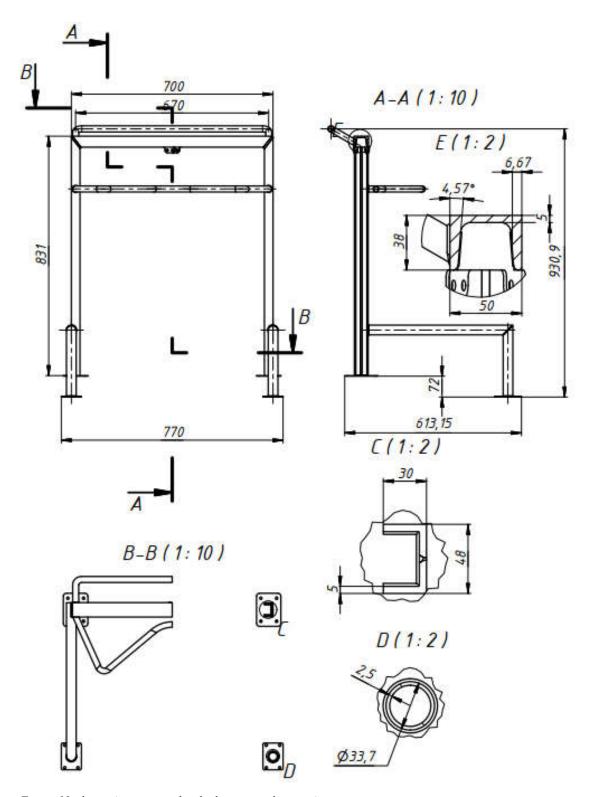


Figura 19: dimensões projectadas do dispositivo de sujeição

11.4. Cálculo Projectivo dos Acessórios de Accionamento

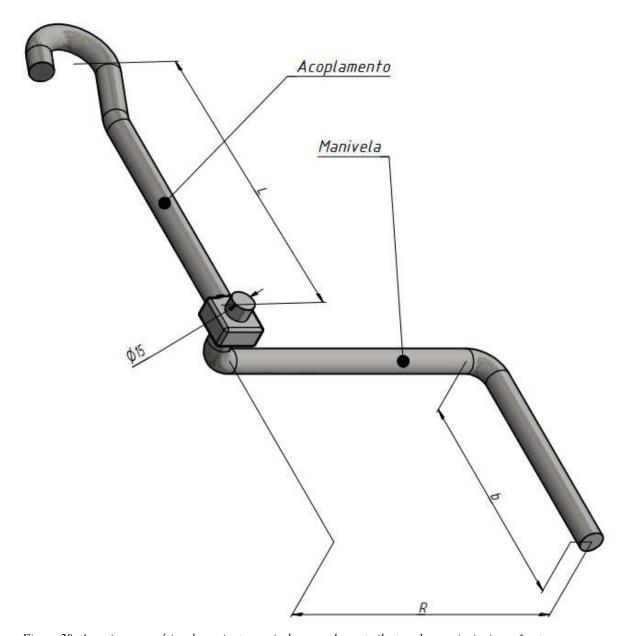


Figura 20: Arranjo esquemático do conjunto manivela e acoplamento ilustrando os principais parâmetros

Cálculo do Acoplamento

O diagrama de carregamento do acoplamento não é aqui mostrado por ser simples e previsível, a saber: momento torsor.

O diâmetro deste elemento já foi calculado na secção do cálculo do parafuso, aqui simplesmente busca-se encontrar o comprimento.

Para calcular o comprimento usa-se a expressão para o cálculo do ângulo de torção (em radiano) seguinte

$$\theta = \frac{TL}{GJ} \tag{43}$$

Onde:

G – é o modulo de rigidez a torção e é igual a 81700 MPa, para o material em questão;

 $J - \acute{e}$ o momento polar de inercia;

Limitamos o ângulo de torção para $2^{\circ} \left(\frac{2\pi}{180} rad\right)$ e calculamos o comprimento pela expressão dada acima:

$$L = \frac{GJ\theta}{T} = \frac{81700 \times \pi \times 15^4 \times 2\pi}{68352 \times 32 \times 180} = 207,4 \ mm$$

Cálculo Projecto da Manivela

Restringe-se a força bruta a ser exercida a $20 \, kgf$, calcula-se o braço da manivela: através do torque;

$$R = \frac{T}{F}$$

$$R = \frac{68352}{196.2} = 348.4 \ mm;$$
(44)

12. Cálculo Testador

O cálculo testador consiste em calcular as reacções internas da estrutura já projectada em seguida comparar as tensões resultantes com a do material, usando uma teoria de falha adequada;

O elemento é considerado apto quando as tensões nele forem menores que as do material, considerando também, um coeficiente de segurança para eventuais sobrecargas não previstas.

Neste presente trabalho usar-se-á a teoria de falha para materiais dúcteis de Máxima Energia de Distorção, também designada de teoria de von Mises ou von Mises-Henky, teoria da energia de cisalhamento e teoria da tensão de cisalhamento octaédrica que preconiza que "o escoamento num material ocorre quando a energia de deformação por distorção em uma unidade de volume excede a energia de deformação por distorção por unidade de volume no escoamento sobre tracção ou compressão simples do mesmo material". (BUDYNAS e NISBETT 2011, 239)

Essa teoria é expressa pela seguinte equação, para um dado sistema de coordenadas xyz do tensor tridimensional de tensões:

$$\sqrt{\frac{(\sigma_x - \sigma_y)^2}{2} + \frac{(\sigma_y - \sigma_z)^2}{2} + \frac{(\sigma_z - \sigma_x)^2}{2} + 3(\tau^2_{xy} + \tau^2_{yz} + \tau^2_{zx})} \ge \sigma_e$$
 (45)

Onde:

O lado esquerdo da equação é tida como uma única tensão equivalente, também designada de tensão de von Mises (σ_{eq}) em homenagem ao dr. R. von Mises que contribuiu para essa teoria;

Considerando que o objectivo é prevenir falha, neste caso a falha seria o material alcançar o limite de escoamento, a inequação acima deve ser contrária; e observando um coeficiente de segurança obtemos a equação a seguir para o calculo testador:

$$\sigma_{eq} \le \frac{\sigma_e}{n} \tag{46}$$

Aplicando a equação (46) para o material do carrinho aço SAE 1020 com $\sigma_e = 210 \, MPa$ e coeficiente de segurana n=1,5, para materiais dúcteis, temos o limite admissível para as tenções:

$$\sigma_{eq} \le \frac{210}{1.5} = 140 MPa.$$

Teste das Tensões do Carrinho de Transporte de Tambor de Concentrado por FEA

Dados de Entrada:

- ✓ Tipo de apoios: 1 fixo e 3 móveis;
- ✓ Tipo de elemento usado: sólido tetraédrico de 4 nós;
- ✓ Número total de elementos: 1 684 088;
- ✓ Número total de nós: 2 609 828;
- ✓ Dimensão média dos elementos (fracção da mínima dimensão do modelo): 0,1;
- ✓ Mínima dimensão do elemento (fracção da dimensão média dos elementos): 0,2;
- ✓ Factor geométrico dos elementos: 1,5;
- ✓ Máximo ângulo entre os elementos: 60°.

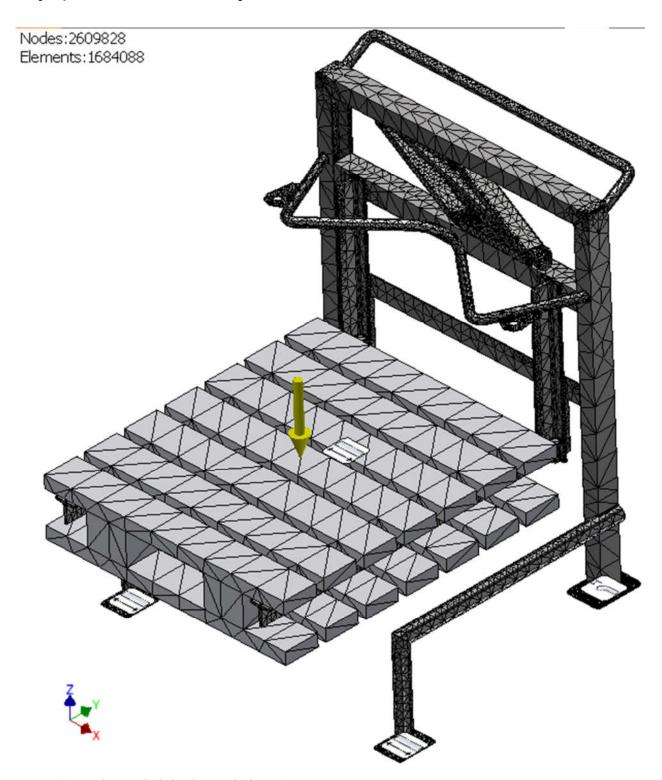


Figura 21: visualização de dados de entrada do FEA

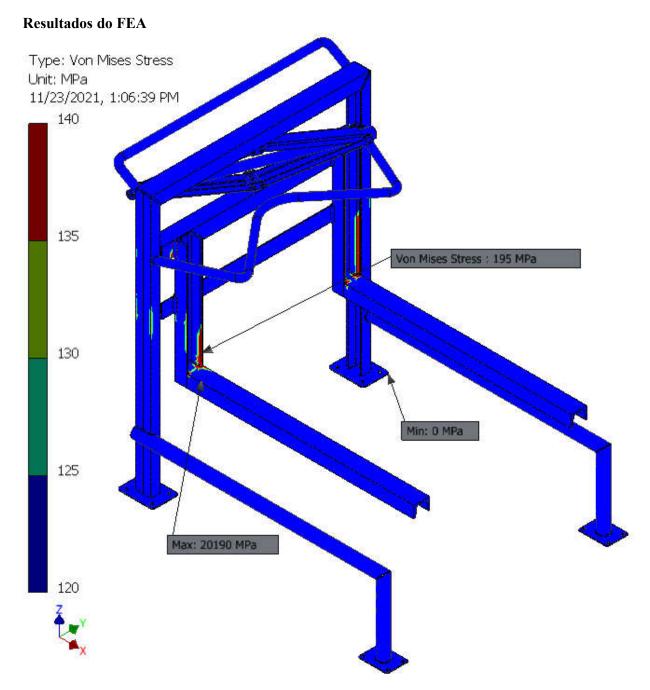


Figura 22: diagrama de tensões de von Mises do carrinho

O diagrama de tensões na figura acima, foi graduado ao limite máximo de 140 *MPa* correspondente ao limite máximo de tensão admissível do material calculado pela expressão (46) de modo a facilitar a identificação das zonas criticamente carregadas.

De acordo com o diagrama da figura 22 podemos constatar que o dispositivo de sujeição e a estrutura apresentam zonas de falha, pois a tensão equivalente de von Mises é superior a tensão de escoamento sobre tracção do material.

12.1. Analise de Tensão das Zonas Sobrecarregadas

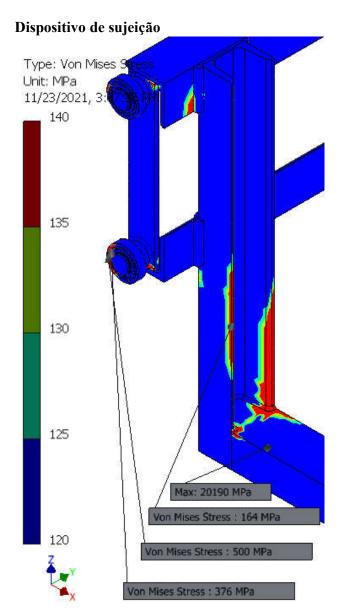


Figura 23: Diagrama de tensões equivalente de von Mises do dispositivo de sujeição

Observando a figura 23 do diagrama de tensões mais nítido do dispositivo de sujeição constatase que a sobrecarga se verifica maioritariamente nas juntas soldadas, com excepção da sobrecarga nas abas dos perfis verticais U, isto é, o elemento 5 (garfo vertical) do dispositivo de sujeição.

Quanto as juntas, as sobrecargas não são consideradas uma falha pelo simples facto de não terem sido calculadas por não ser o escopo do projecto o qual é realizado para fins didácticos.

As juntas da zona de transição entre o perfil U vertical para horizontal a qual apresenta uma tensão extremamente elevada (20190 *MPa*) e obviamente anormal deve-se a transição brusca de secção e a erros inerente a computação na preparação das superfícies a soldar e na geração das soldas.

Quanto a transição entre membros buscar-se-á uma solução a ser apresentada adiante apos o estudo da rigidez;

Quanto a tensão de 165 MPa sobre as abas do perfil U vertical será substituído por outro perfil do tipo T com modulo de rigidez a flexão igual a 3,36 cm^3 por este ter uma aba de uma altura maior.

Estrutura

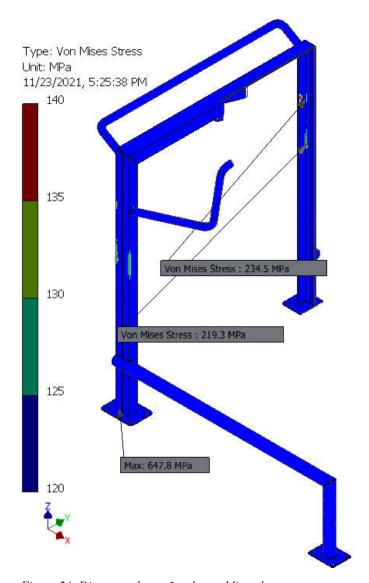


Figura 24: Diagrama de tensões de von Mises da estrutura

Analisando o diagrama de tensões da figura 24 constata-se que a sobrecarga de tenções ocorre nos cantos próximos a zona de contacto com os rolamentos do dispositivo de sujeição; acredita-se que esta seja causada pela flexão exercida pela reacção dos rolamentos que combinada com o pequeno raio de arredondamento dos cantos internos das cantoneiras que são menores que os do perfil U inicialmente proposto, como se pode ver na figura 25.

A escolha das cantoneiras para formar um perfil C equivalente ao calculado foi feita para aproveitar a sua superficie não inclinada para o contacto com os rolamentos, mas devido a este inconveniente que piora a sensibilidade a tensões na transição de superficies, vota-se ao perfil inicialmente calculado.

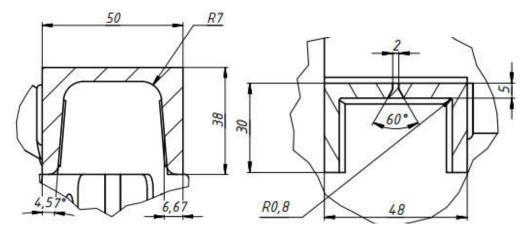


Figura 25: Perfil C original a esquerda e perfil C obtido por dois perfis de abas iguais através da soldadura a direita

Type: Displacement Unit: mm 11/24/2021, 8:27:38 PM 19.11 Max 15.29 11.47 7.64 3.82 0 Min

12.2. Análise da Deformação do Carinho Mediante o Carregamento

Figura 26: Diagrama de deformação do carrinho de transporte de concentrado

O diagrama de deformação do carinho é dado pela figura 26, observando a figura constata-se que a maior parte dos membros do carrinho, com excepção dos garfos horizontais do dispositivo de sujeição e do membro horizontal da estrutura, apresentam uma deformação resultante menor que 4 mm e direccionada mais para o eixo x, pela avaliação feita ao carinho esta deformação não compromete o funcionamento do mesmo;

Deformação do Garfo

Os garfos horizontais do dispositivo de sujeição da carga apresentam uma deformação de aproximadamente 19 mm o que constitui o valor máximo, este deslocamento gera uma inclinação de 1,5°; a derrapagem, ainda que seja difícil estaticamente, a sua ocorrência é possibilidade se se tomar em conta as vibrações durante o movimento devido as irregularidades do piso; para a solução deste problema, a semelhança do garfo vertical, será substituído o perfil C por T, que se espera que apresente menor flecha em virtude de sua aba mais alta em relação a do perfil C.

Tomando em conta a questão de segurança de operação do carrinho nas rampas, prevê-se um sinto de segurança que acaba sendo uma solução ainda mais segura para o possível problema mencionado no paragrafo anterior.

Deformação do Membro Horizontal da Estrutura

O membro horizontal da estrutura tem uma deformação máxima não superior a 15 mm o que na analise estática não afecta o funcionamento do carrinho mas considerando um coeficiente de segurança para as deformações prevê-se reduzir o comprimento do membro a dois terços do comprimento inicial e reforça-los com abas de chapas obliquas no sentido da deformação.

12.3. Resultados de Diagramas Recalculados

Diagrama de Tensões Equivalente Recalculado

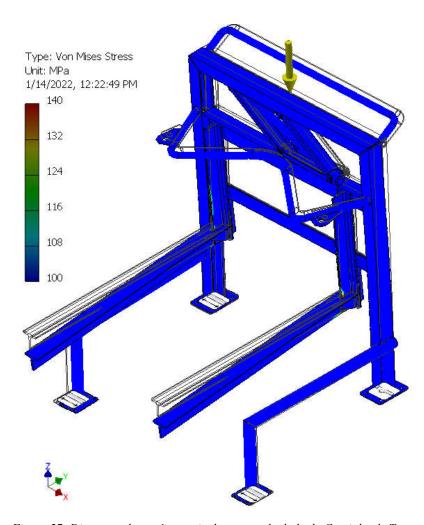


Figura 27: Diagrama de tensões equivalentes recalculado do Carrinho de Transporte de Concentrado

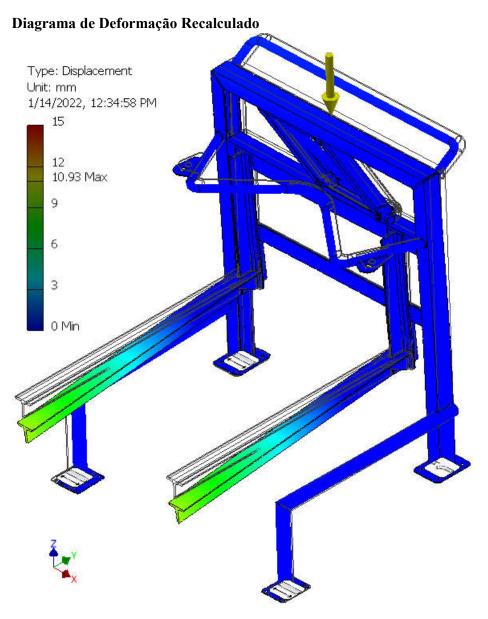


Figura 28: Diagrama de deformação recalculado do Carrinho de Transporte de Concentrado

De acordo com os resultados apresentado pêlos diagramas acima pode-se constatar que as soluções tomadas de substituição do perfil C pelo T e substituição de cantoneiras soldadas para fazer um perfil C por um perfil C original surtiram o efeito desejado, pois, as zonas onde apresentavam falhas foram melhoradas e já não apresentam falhas e a deformação foi reduzida a aproximadamente 50%, isto é, de 19,11 mm para 10,91 mm; salientar que para a questão da deformação foi tomada uma decisão de ancorar com uma corrente o tambor, solução esta que já está incorporada no modelo recalculado, assim sendo a redução da deformação é só uma prova da melhoria com a escolha do perfil T.

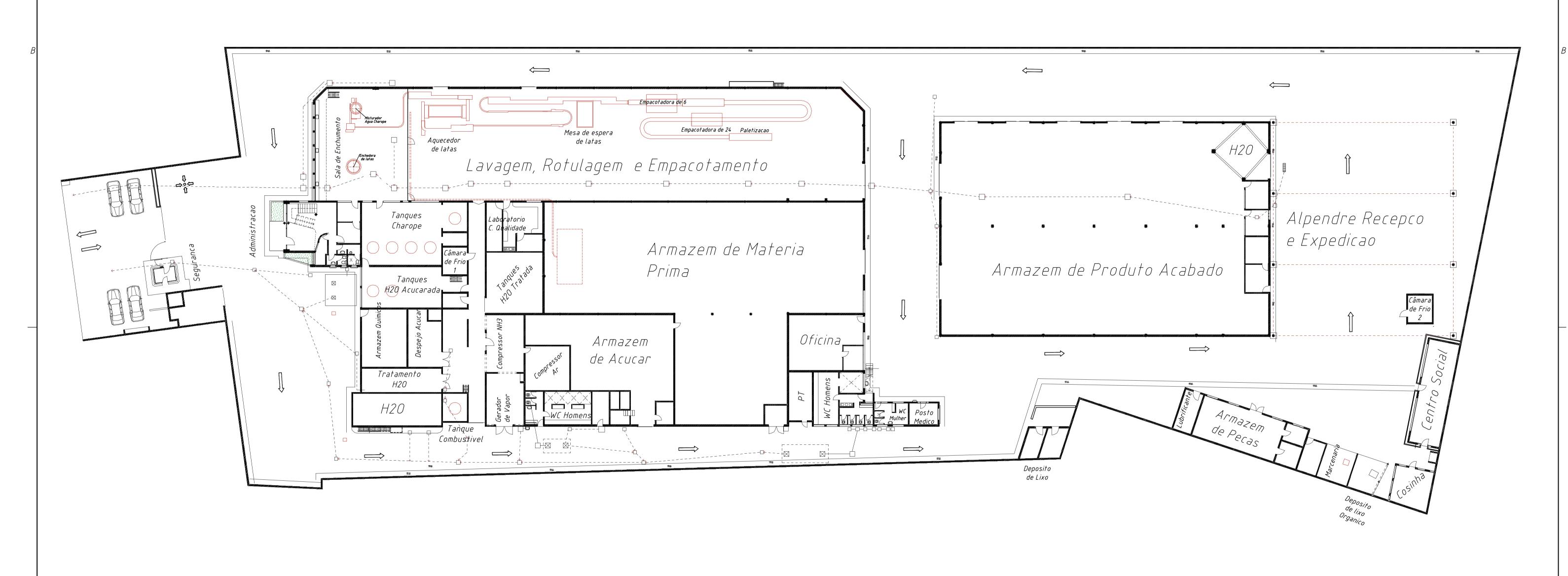
13. Conclusão e Recomendações

Chegado ao fim da realização do projecto conclui-se que os objectivos traçados foram alcançados com sucesso, que a solução deste carrinho satisfaz a necessidade visada neste período em que o projecto foi realizado. Com o passar do tempo as condições podem mudar e o projecto devera passar por revisão e actualização para satisfazer as necessidades daquelas circunstâncias.

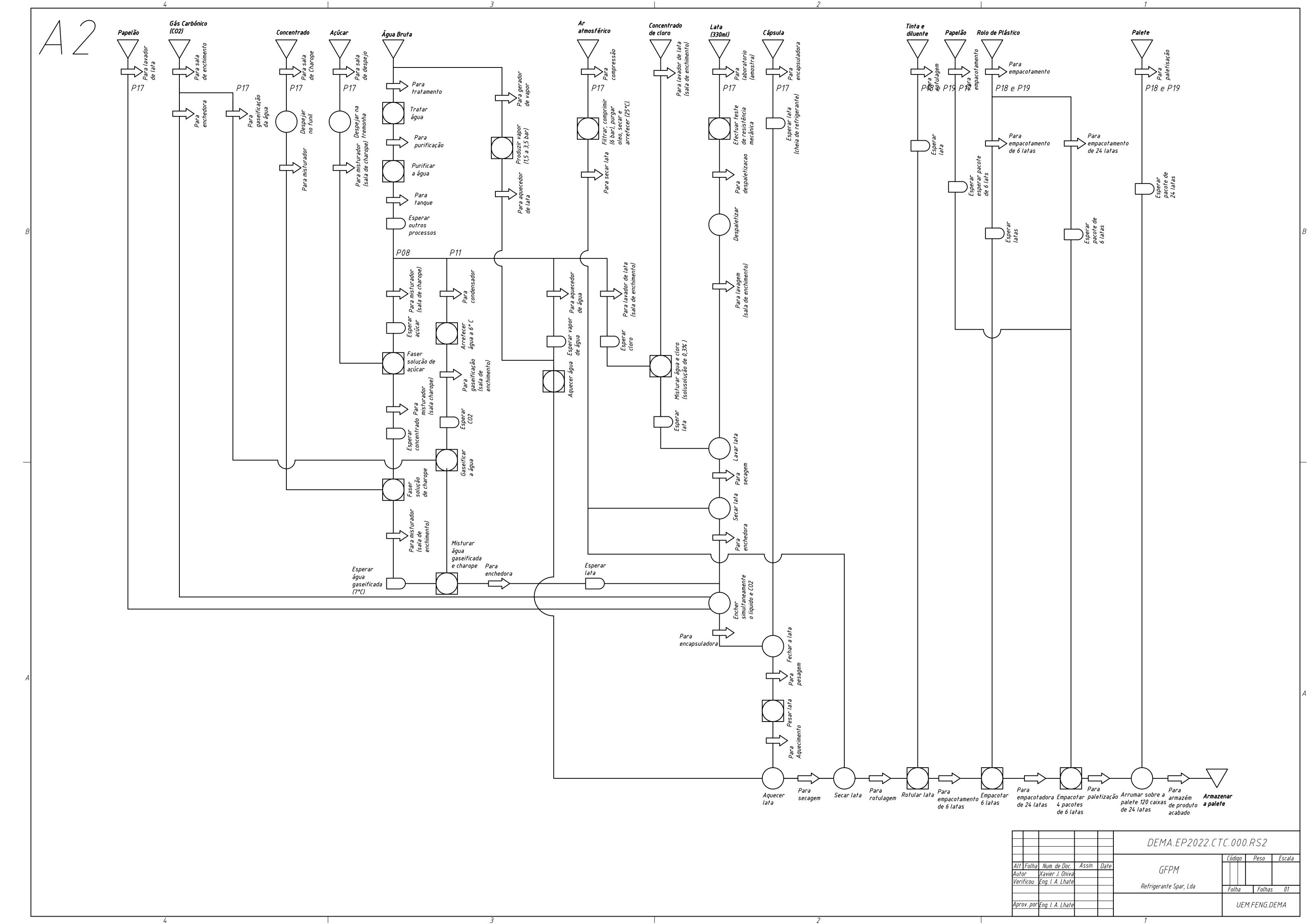
Recomenda-se aprofundar o estudo para as ligações soldadas no caso da implementação do projecto, visto que não foi abarcado por este estudo.

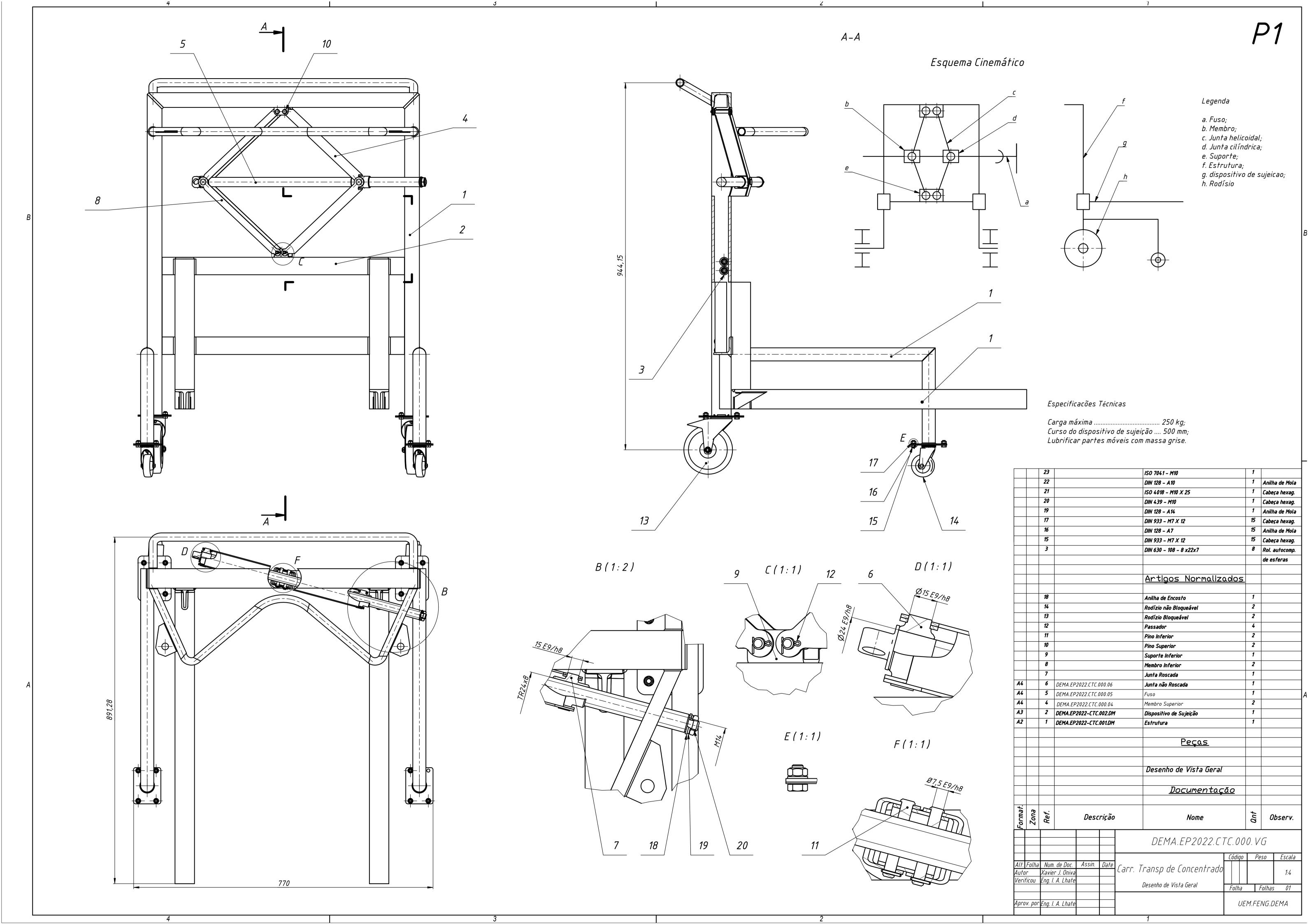
14.Bibliografia

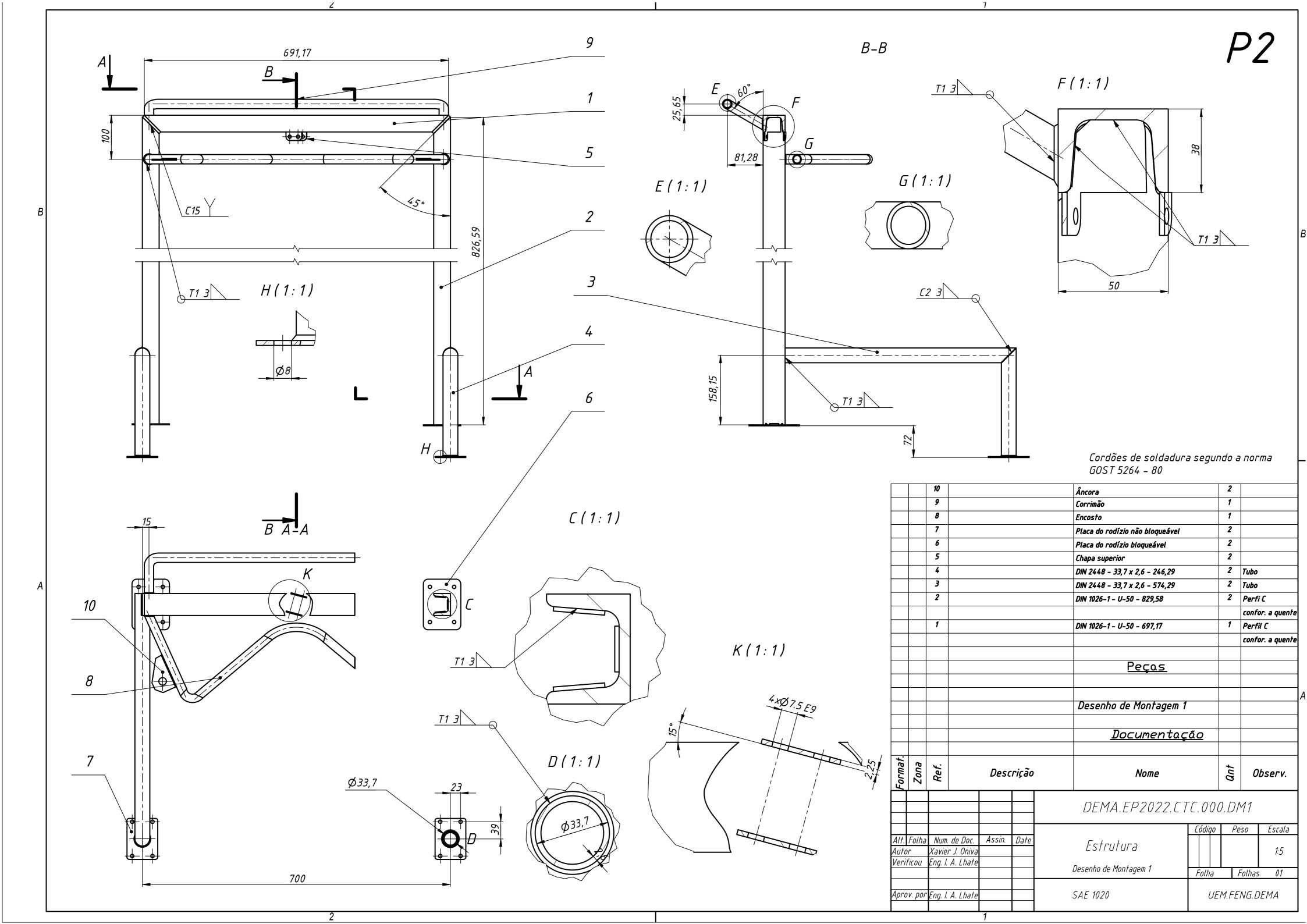
- [1] FARINHA, J. S.; CORREIA DOS REIS, A. Tabelas Técnicas. 10. ed. Setúbal, 1993.
- [2] HIBBELER, Russell **Resistência dos Materiais**. 7. ed. São Paulo: Pearson Prentice Hall, 2010.
- [3] SITOE, Rui Vasco. **Manual de Órgãos de Maquinas 1:** Ligações Rebitadas. Maputo: Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade Eduardo Mondlane, 2005.
- [4] BUDYNAS, Richard G.; NISBETT, J. Keith. **Elementos de Máquinas de Shigley**: Projeto de Engenharia Mecânica. 8. ed. Porto Alegre: AMGH, 2011.
- [5] RESHETOV, D. N.; et al. Atlas de Construção de Máquinas. Rio de Janeiro: RENOVADA LIVROS CULTURAIS LTDA, 1979.
- [6] SITOE, Rui Vasco. **Manual de Órgãos de Maquinas 1:** Ligações Roscadas. Maputo: Departamento de Engenharia Mecânica da Faculdade de Engenharia da Universidade Eduardo Mondlane, 2005.

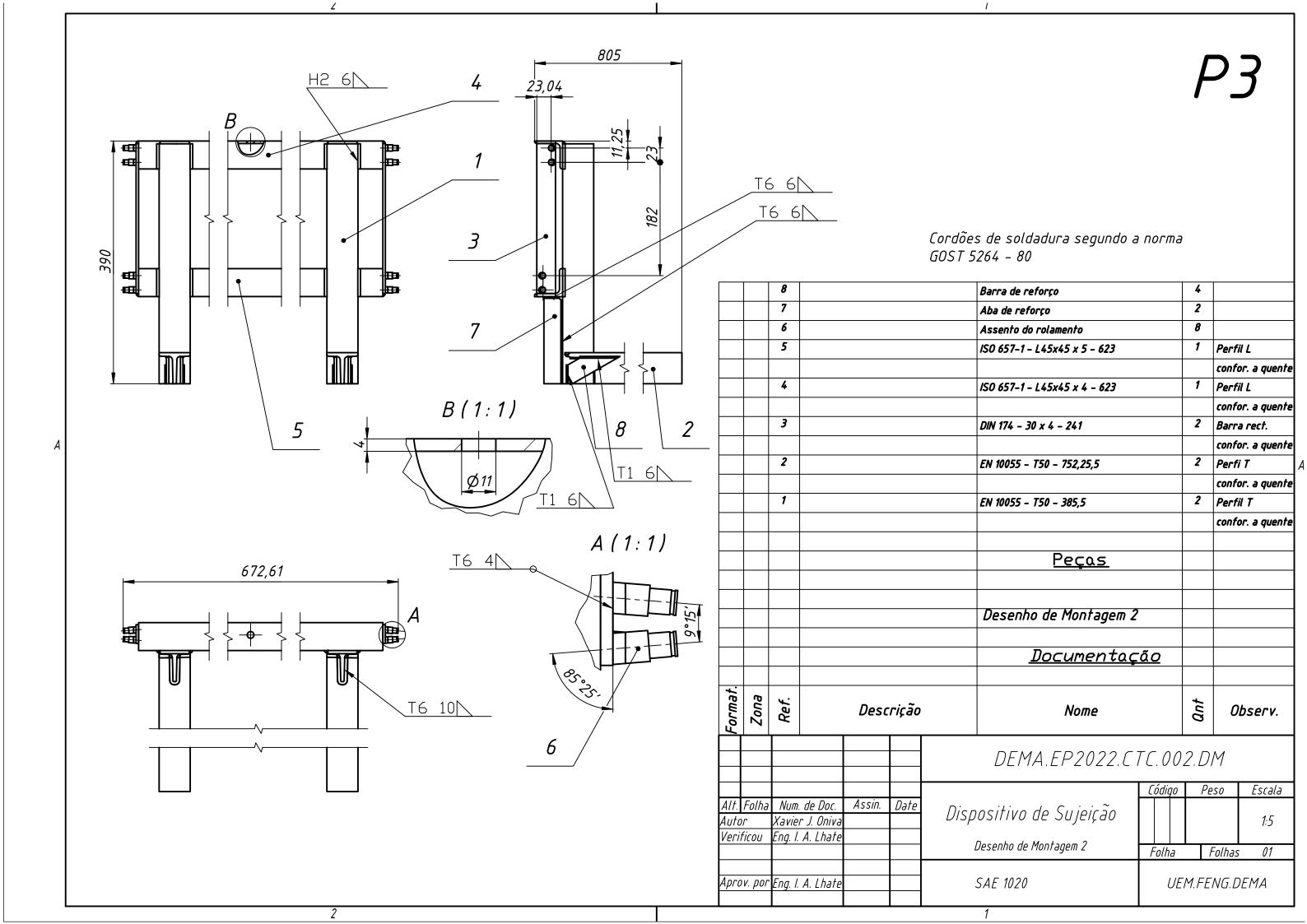

15.Anexos

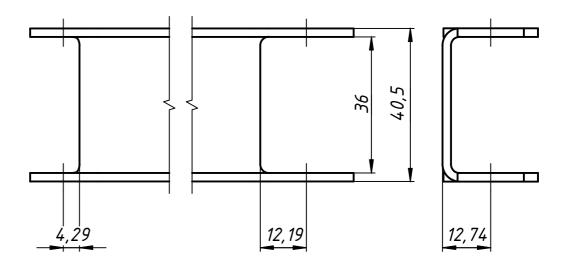
- A1. Planta da empresa Refrigerante Spar, Lda;
- A2. Gráfico de Fluxo de Processo do Tipo Material da empresa Refrigerantes Spar, Lda;
- A3. Organograma da empresa Refrigerante Spar, Lda.

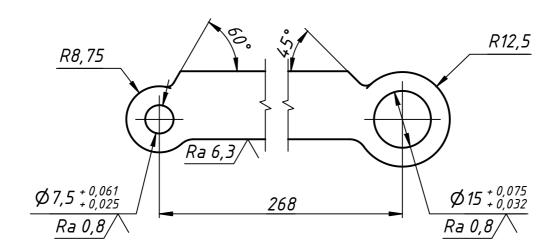

16.Apêndice

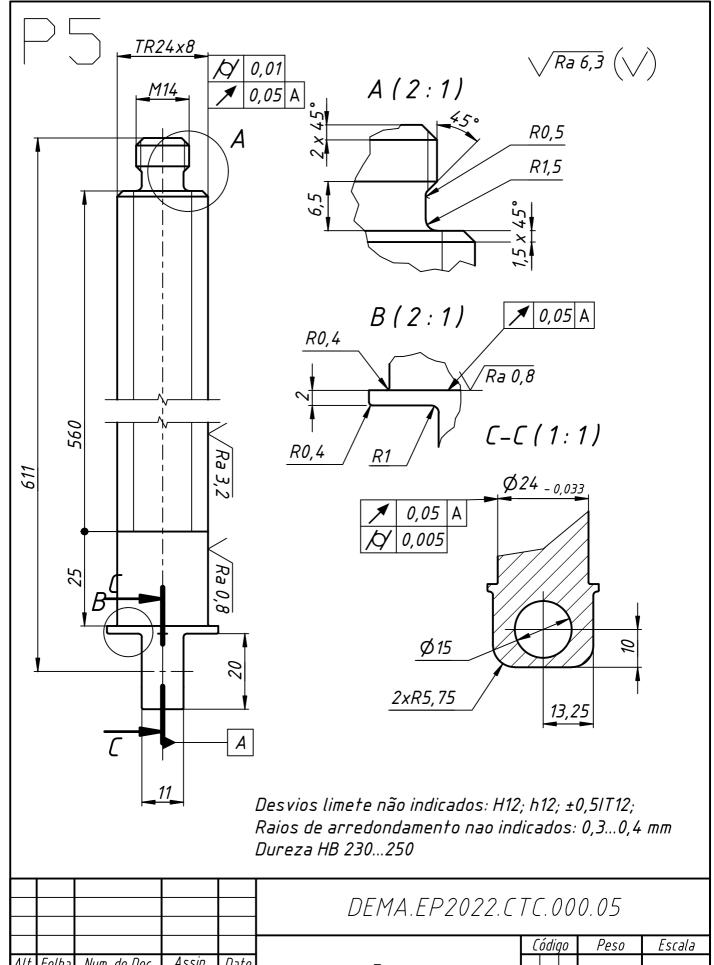

- P1. Desenho de vista geral do Carrinho de Transporte de Tambor de Concentrado;
- P2. Desenho de montagem da Estrutura do Carrinho de Transporte de Tambor de Concentrado;
- P3. Desenho de montagem do Mecanismo de Elevação do Carrinho de Transporte de Tambor de Concentrado;
- P4. Desenho Membro Superior do Mecanismo de Elevação do Carrinho de Transporte de Tambor de Concentrado;
- P5. Desenho do Fuso do Carrinho de Transporte de Tambor de Concentrado;
- P6. Desenho do Junta não Roscada do Carrinho de Transporte de Tambor de Concentrado;
- P7. Desenho do Acoplamento (acessório) do Carrinho de Transporte de Tambor de Concentrado;
- P8. Desenho da Manivela (acessório) do Carrinho de Transporte de Tambor de Concentrado.


A 1

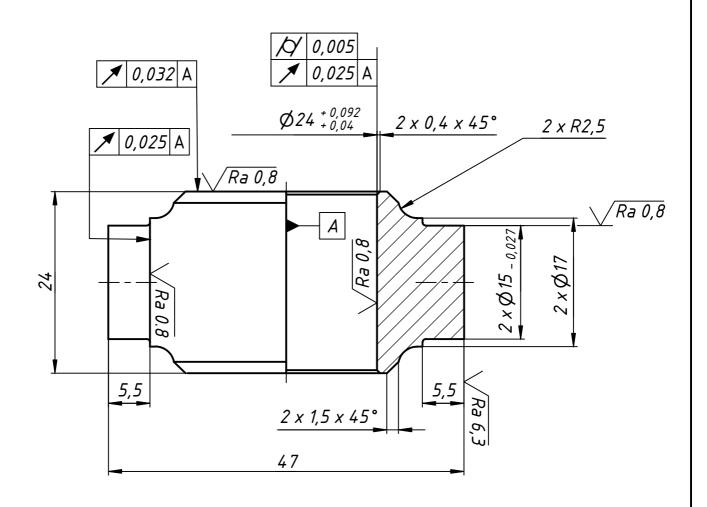



			DEMA.EP2022.C7	TC.000	.RS1	
				Código	Peso	Escala
Num. de Doc.	Assin.	Date	DI_{2} $p \neq 2$			
Xavier J. Oniva			PldIII d			28:1000
Eng. I. A. Lhate			D.C. Saranda Cara I da			
			Kerrigerante Spar, Lda	Folha	Folhas	s 01
Eng. I. A. Lhate				UEN	1.FENG.L	DEMA
	Eng. l. A. Lhate	Num. de Doc. Assin. Xavier J. Oniva Eng. I. A. Lhate	Xavier J. Oniva Eng. I. A. Lhate	Num. de Doc. Assin. Date Xavier J. Oniva Eng. I. A. Lhate Refrigerante Spar, Lda	Num. de Doc. Assin. Date Xavier J. Oniva Eng. I. A. Lhate Refrigerante Spar, Lda Folha	Num. de Doc. Assin. Date Xavier J. Oniva Eng. I. A. Lhate Refrigerante Spar, Lda Folha



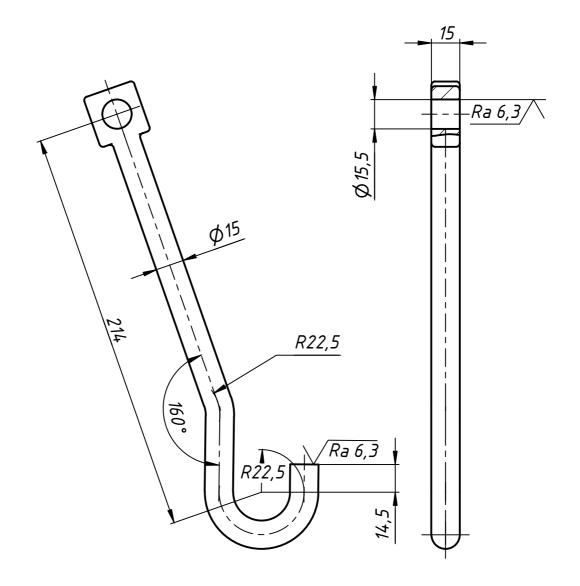


Desvios limite não indicados: H12; h12; ±0,5IT12;

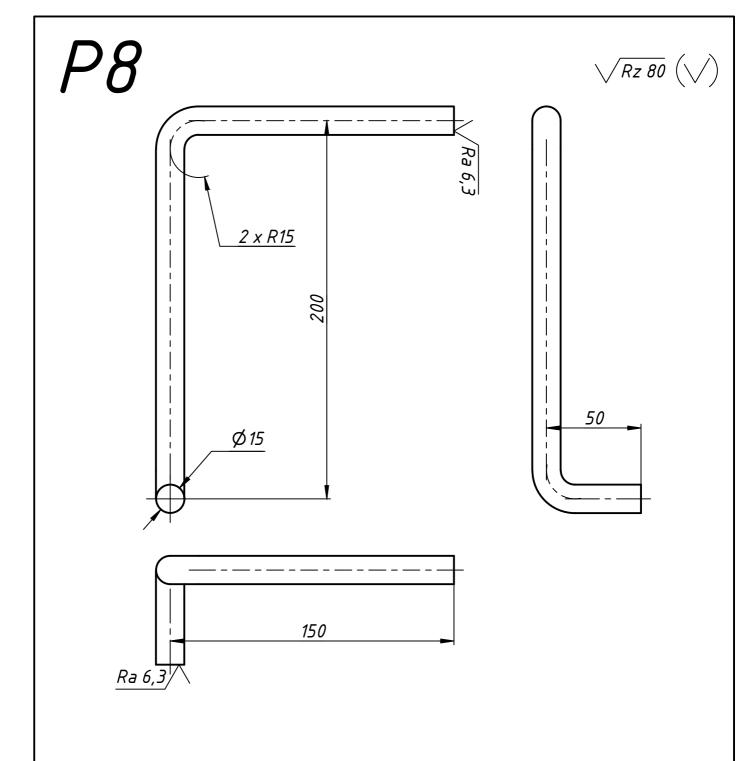

Raios de arredondamento na trasição de superfície não indicados: 2,25 mm

Dureza: HB 230...250

					DEMA.EP2022.CTC.000.04						
						Có	digo	Peso	Escala		
Alt.	Folha	Num. de Doc.	Assin.	Date	Mambra Cupariar						
Auto	or	Xavier J. Oniva			Membro Superior				1:1		
Veri	ificou	Eng. l. A. Lhate									
						Fo	lha	Folhas	: 01		
Apro	Aprov. por Eng. I. A. Lhate				SAE 1020		UEM.FENG.DEMA				



					DEMA.EP2022.CTC.000.05							
						Cód	digo	Peso	Escala			
Alt.	Folha	Num. de Doc.	Assin.	Date	Fuso							
Auto	or .	Xavier J. Oniva			1 050			1:1				
Veri	ficou	Eng. I. A. Lhate										
						Folha		Folhas	5 01			
Apro	оч. рог	Eng. I. A. Lhate			SAE 1020	UEM.FENG.DEMA						


Desvios limite não indicados: H12; h12; ±0,5IT12; Raios de arredondamento na trasição de superfície não indicados: 0,3...0,4 mm Dureza: HB 230...250

					DEMA.EP2022.C	DEMA.EP2022.CTC.000.06							
						Cóc	ligo	Peso	Escala				
Alt.	Folha	Num. de Doc.	Assin.	Date	Junta não Roscada								
Auto	or	Xavier J. Oniva			JUIII A IIAU KUSLAUA				2:1				
Veri	ificou	Eng. I. A. Lhate											
						Folha Folhas		: 01					
								· ·					
Арго	Aprov. por Eng. I. A. Lhat				SAE 1020	UEM.FENG.DEMA			PEMA				

Desvios limite não indicados: H12; h12; ±0,5IT12; Raios de arredondamento na trasição de superfície não indicados: 3...4 mm Dureza: HB 230...250

					DEMA.EP2022.C	TC.00	0.a1	
						Código	Peso	Escala
Alt.	Folha	Num. de Doc.	Assin.	Date	1 contamonto			
Autor		Xavier J. Oniva			Acoplamento			1:1
Veri	ificou	Eng. I. A. Lhate			A			
					Acessório	Folha	Folhas	: 01
Арго	Aprov. por Eng. I. A. Lhate				SAE 1020	UEM.FENG.DEMA		

- 1. Desvios limite não indicados: H12; h12; ±0,5IT12;
- 2. Dureza: HB 230...250.

					DEMA.EP2022.C	TC.	00	0.a2			
						Cód	igo	Peso	Escala		
Alt.	Folha	Num. de Doc.	Assin.	Date	Manivela						
Auto		Xavier J. Oniva			Mannveta				1:1		
Veri	ificou	Eng. I. A. Lhate			4						
					Acessório	Foli	ha	Folhas	: 01		
Арго	оч. рог	Eng. I. A. Lhate			SAE 1020	UEM.FENG.DEMA					