

UNIVERSIDADE EDUARDO MONDLANE FACULDADE DE ENGENHARIA DEPARTAMENTO DE ENGENHARIA CIVIL

Trabalho de Licenciatura

DIMENSIONAMENTO DE UMA ESTRADA MUNICIPAL

Caso de estudo: Rua 04 de Outubro do Município de Marrupa-Niassa

Fábio de Aires Conge

Supervisor:

Prof. Doutor Engº José Francisco Rufino Diogo

Maputo, Dezembro de 2023

DIMENSIONAMENTO DE UMA ESTRDA MUNICIPAL

Caso de estudo: Rua 04 de Outubro do Município de Marrupa-Niassa

Trabalho de Licenciatura submetido ao Departamento de Engenharia Civil para obtenção do grau de Licenciatura em Engenharia Civil

Supervisor:

Prof. Doutor Engº José Francisco Rufino Diogo

UNIVERSIDADE EDUARDO MONDLANE

FACULDADE DE ENGENHARIA

DEPARTAMENTO DE ENGENHARIA CIVIL

TERMO DE ENTREGA DO RELATÓRIO DO TRABALHO DE LINCECIATURA

Declaro que o est	udante			
Entregou no dia _	/		as	cópias do
relatório do seu T	rabalho de Licen	ciatura com a referêr	ncia:	
Intitulado:				
Maputo, aos	de	de		
O (A) Chefe da Se				
o (rt) onolo da oc	oorotana			

DECLARAÇÃO DE HONRA

Eu, **Fábio de Aires Conge**, declaro por minha honra que o trabalho de licenciatura intitulado **Dimensionamento de uma Estrada Municipal**, com o Caso de estudo: Rua 04 de Outubro do Município de Marrupa- Niassa, que apresento para obtenção do grau de licenciatura em Engenharia Civil, é o resultado da minha investigação pessoal e independente, orientado pelo supervisor Prof. Doutor Engº José Francisco Rufino Diogo. O seu conteúdo é autêntico e todas as fontes consultadas estão devidamente mencionadas no texto e nas referências bibliográficas.

DEDICATÓRIA

Aos meus pais e à minha irmã

"Age de tal forma que a máxima do teu querer, possa valer em todo tempo, também como um princípio de uma legislação geral"

Immanuel Kant

AGRADECIMENTOS

Quero expressar a minha profunda gratidão por este momento significativo em minha jornada, começando por agradecer a Deus pelo dom da vida e pela oportunidade de completar mais uma etapa importante em minha trajectória.

À minha amada família, expresso meu reconhecimento sincero pelo suporte constante. Seu apoio incansável, energia positiva e amor incondicional foram fundamentais. Quero estender um agradecimento especial aos meus pais, Justino Conge, Ivone Comé, Ricardo Francisco, Raquel Nhari e Nelson Conge pela força, incentivo e dedicação que sempre demonstraram ao longo da minha vida e durante meu percurso académico. Às minhas irmãs, Hirla Conge e Marta Francisco, e aos meus irmãos, Edson Francisco e Juscelino Francisco, agradeço pela inspiração e apoio constante.

Um reconhecimento especial também aos meus estimados professores, em especial ao Prof. Doutor Engº José Francisco Rufino Diogo, meu orientador, pelo apoio inestimável e por ter acompanhado de perto a realização deste trabalho, sempre aberto ao diálogo, compartilhando palavras sábias e incentivadoras, abrindo portas e apoiando incondicionalmente.

Expresso minha gratidão aos meus amigos e irmãos pelo estímulo e contribuições valiosas, em particular: Artur Coutinho, Fernando Banze, Hamilton Enosse, Hidelson Vilanculos, Cleide Santos, Laura Saiete, Luís Guambe, Simião Fernando, Amir Mussa, Celestino Come, Stélio João, Francisco Jr., Emídio Manjate, Jürgen Sambo, Jorge Niquice, Gabriel Mbenzane, Gerson Ribeiro, Moisés Maposse, Fidal Muhammad, Salésio Conge, Milton da Olga, Silva Langa, Eusébio Fumo.

A todos os amigos e colegas do curso de Engenharia Civil e da Faculdade de Engenharia em geral, destaco a importância de Frâncio Mate, Revelino Langa, Elton Nassoro, Leonildo Jacinto, Manuel Inácio, Málik Boane, Henriques Zunguze, Eric Guambe, Agostinho, Fernando Cossa, Issufo Zeinal, Sebatião Cumbane, Carson Ribeiro, Gilberto Maguel, Aida Âlfandega e Cáren Mapende pelo apoio moral e pelas contribuições valiosas durante a elaboração deste trabalho.

Um agradecimento especial ao Engº Celso Nicol's pelo acolhimento caloroso e apoio científico e moral.

Os meus agradecimentos são extensivos aos meus amigos da terra natal, não só mas também, aos que muito me apoiaram durante esta etapa da minha vida.

RESUMO

Este estudo empreende uma análise minuciosa da infra-estrutura rodoviária na Rua 04 de Outubro, Marrupa, Moçambique, buscando não apenas oferecer soluções concretas, mas também integrar aspectos técnicos e académicos para embasar decisões no desenvolvimento da pavimentação. A investigação do tráfego na Rua 04 de Outubro indica sua natureza como via de colecta para tráfego leve, dominada por automóveis leves e biciclos motorizados. Ao avaliar a classe de tráfego e considerando a baixa presença de veículos pesados, surge a necessidade de adequar a classificação, utilizando a abordagem da UTG, conforme tabelas específicas. Os resultados dos ensaios laboratoriais fornecem sugestões valiosos para a classificação dos materiais, referenciando padrões AASHTO e TRH14. O subleito, qualificado como SG1, reflecte as características regionais identificadas no TRH14, orientando a escolha do método de dimensionamento estrutural do pavimento. Ao abordar as espessuras das camadas do pavimento, três métodos distintos (australiano, mecanístico sul-africano e sul-africano da UTG2) são explorados. A preferência pelo método da UTG2 se destaca, evidenciando uma estrutura optimizada que considera variáveis climáticas, características do subleito, materiais e tráfego local. A análise estrutural, conduzida por meio do programa e KenPave, adopta o modelo linear elástico nos cenários C1 e C2. Aprofundando na análise de deslocamentos verticais, danos e tensões, a superioridade do pavimento C2 se revela, indicando uma resposta estrutural mais eficiente. A projecção da vida útil do pavimento, utilizando uma abordagem simplificada com base na classe de tráfego, aponta uma clara vantagem para o C2, oferecendo 27 anos de durabilidade em comparação aos 13 anos do C1, considerando um tráfego anual de 200.000 veículos. Este estudo, além de seu papel na compreensão local da pavimentação, contribui significativamente para a literatura académica ao apresentar uma abordagem técnica, sustentada em métodos normativos e análises estruturais, para embasar decisões futuras na infra-estrutura viária em Moçambique.

Palavras-Chave: Pavimentação, Dimensionamento estrutural, Infra-estrutura rodoviária, Análise de tráfego, Modelo linear elástico

ABSTRACT

This study undertakes a meticulous analysis of the road infrastructure on Rua 04 de Outubro, Marrupa, Mozambique, aiming not only to provide concrete solutions but also to integrate technical and academic aspects to inform decisions in pavement development. Traffic investigation on Rua 04 de Outubro indicates its nature as a collector road for light traffic, predominantly featuring light automobiles and motorized bicycles. Evaluating the traffic class and considering the low presence of heavy vehicles, there arises the need to adjust the classification, utilizing the UTG approach, as per specific tables. Laboratory test results provide valuable suggestions for material classification, referencing AASHTO and TRH14 standards. The subgrade, qualified as SG1, reflects the regional characteristics identified in TRH14, guiding the choice of the pavement structural design method. When addressing pavement layer thicknesses, three distinct methods (Australian, South African mechanistic, and UTG2 South African) are explored. The preference for the UTG2 method stands out, highlighting an optimized structure that takes into account climatic variables, subgrade characteristics, materials, and local traffic. The structural analysis, conducted through the *DesignPave* and Ken Pave programs, adopts the elastic linear model in scenarios C1 and C2. Delving into the analysis of vertical displacements, damages, and stresses, the superiority of pavement C2 is revealed, indicating a more efficient structural response. Projecting the pavement's lifespan, using a simplified approach based on traffic class, clearly favors C2, offering 27 years of durability compared to C1's 13 years, considering an annual traffic of 200,000 vehicles. This study, in addition to its role in local pavement understanding, significantly contributes to academic literature by presenting a technical approach, grounded in normative methods and structural analyses, to inform future decisions in road infrastructure in Mozambique.

Keywords: Pavement, Structural Design, Road Infrastructure, Traffic Analysis, Elastic Linear Model.

SUMÁRIO

DEDICATÓ	RIA	2
AGRADEC	IMENTOS	3
RESUMO		4
ABSTRAC1	Γ	5
SUMÁRIO.		6
LISTA DE F	FIGURAS	12
LISTA DE T	ABELAS	13
LISTA DE C	QUADROS	14
LISTA DE G	GRÁFICOS	14
LISTA DE E	EQUAÇÕES	14
1. INTRO	DUÇÃO	15
1.1. Co	ontextualização	15
1.2. Pr	oblema	16
1.3. Ju	stificativa	16
1.4. Ob	ojectivos	16
1.4.1.	Objectivo Geral	16
1.4.2.	Objectivos Específicos	16
1.5. Me	etodologia de pesquisa	17
1.5.1.	Revisão Bibliográfica e Consultas	17
1.5.2.	Colecta de Dados	17
1.5.3.	Uso de Geoprocessamento	17
1.5.4.	Análise e Planeamento	17
1.5.5.	Processamento dos dados	18
1.5.6.	Proposta de Soluções Sustentáveis	18
1.5.7.	Validação dos resultados	18
1.5.8.	Relatório Final	18
1.6. Es	strutura do trabalho	18

2.	R	Eν	/ISÃO	BIBLIOGRÁFICA	19
	2.1.		Classi	ficação de estradas	19
	2.2.		Pavim	entos Rodoviários	20
	2.3.		Classi	ficação dos Pavimentos	20
	2	.3.	1. Pa	vimentos flexíveis	20
	2	.3.2	2. Pa	vimentos rígidos	22
		2.	3.2.1.	Estrutura do pavimento Rígido	23
	2	.3.3	3. Pa	vimentos de blocos de betão (PBB)	23
		2.	3.3.1.	Estrutura dos Pavimentos de blocos de betão	24
		2.	3.3.2.	Forma dos Blocos	24
		2.	3.3.3.	Resistência	25
		2.	3.3.4.	Areia para o Leito	25
		2.	3.3.5.	Influência da Forma dos Grãos de Areia	25
		2.	3.3.6.	Qualidade do Colchão de Areia e Defeitos Prematuros	25
		2.	3.3.7.	Granulometria Adequada	25
		2.	3.3.8.	Areia para as Juntas Verticais	26
		2.	3.3.9.	Selecção do Tipo de Pavê e Textura	27
		2.	3.3.10.	Interligação Vertical	27
		2.	3.3.11.	Interligação Rotacional	27
		2.	3.3.12.	Interligação Horizontal	27
	2.4.		Inclina	ções transversais e longitudinais	28
	2.5.		Drena	gem	29
	2.6.	•	Lancis	e valetas	29
	2.7.	•	Definiç	ção dos termos usados em pavimentos de blocos	30
3.	M	1ET	ODOL	OGIAS DE DIMENSIONAMENTO DE PAVIMENTOS DE BLOCOS	DE
BE	ΞΤÃ	0 ((PBB)		31
	3.1.		Conte	xtualização	31
	3.2.	ı	Estudo	o de tráfego	31

3.2.1. Definição da vida util da estrada	32
3.2.2. Tráfego inicial	32
3.2.3. Estimativa de crescimento por classe	33
3.2.3.1. Determinação da taxa de crescimento populacional	34
3.2.4. Estimativa dos eixos padrão equivalentes por classe	34
3.2.5. Estimativa dos eixos padrão equivalentes acumulados	35
3.2.6. Distribuição por faixa	35
3.2.7. Classes de tráfego do projecto	36
3.3. Métodos de dimensionamento de PBB	37
3.3.1. Método Israel	38
3.3.2. Método Sul-Africano da UTG2	39
3.3.3. Método Mecanístico Sul-Africano	40
3.3.4. Análise Mecanística pelos <i>Software KenPave</i> (Dimensionamento Pavimentos em Pavê)	
3.3.4.1. Modelo considerado para análise	42
3.3.4.2. Deformações permanentes	43
3.3.4.3. Determinação de dano por <i>rutting</i>	44
3.3.4.4. Determinação de dano por fadiga	44
4. ESTUDO DE CASO: DIMENSIONAMENTO ESTRURAL DAS CAMADAS PAVIMENTO DA RUA 04 DE OUTUBRO DO MUNICÍPIO DE MARRUPA-NIASSA	
4.1. Breve caracterização do distrito	45
4.1.1. Localização, Superfície e População	45
4.1.2. Clima	46
4.1.3. Caracterização climática conforme a metodologia de Weinert	47
4.2. Estudo do tráfego	47
4.2.1. Contextualização	47
4.2.2. Locais de contagem de tráfego	48
4.2.3. Processo de contagem de tráfego	48

	4.2.4.	Determinação da vida útil da estrada	48
	4.2.5.	Estimativa do tráfego inicial por classe de veículo	49
	4.2.6.	Determinação da taxa de crescimento por ano	49
	4.2.7.	Tráfego médio diário anual (TMDA)	50
	4.2.8.	Estimativa dos eixos padrão (ESAs) por categoria de veículos	51
	4.2.9.	Estimativa dos eixos padrão equivalentes acumulados	51
	4.2.10.	Classe de tráfego	53
4.3	3. Re	esultados dos ensaios laboratoriais	53
4.4	4. De	eterminação das espessuras das camadas do pavimento	54
	4.4.1.	Método Australiano	54
	4.4.1	1.1. Pressupostos	54
	4.4.1	1.2. Estrutura do pavimento	55
	4.4.2.	Método Mecanístico Sul-Africano	56
	4.4.2	2.1. Pressupostos	56
	4.4.2	2.2. Estrutura do pavimento	56
	4.4.3.	Método Sul-Africano da UTG2	57
	4.4.3	3.1. Pressupostos	57
	4.4.3	3.2. Estrutura do pavimento	57
4.	5. Co	omparação de resultados	58
4.6	6. De	escrição dos materiais das camadas de pavimento	59
	4.6.1.	Estrutura do Pavimento	59
4.	7. An	nálise estrutural do pavimento dimensionado (C1 e C2) com auxílio	do
pr	ograma	a <i>DesignPave e KenPave</i> no modelo linear elástico (MLE)	60
	4.7.1.	Cenário 1	60
	4.7.1	I.1. Análise de deslocamentos verticais	60
	4.7.1	1.2. Análise de danos	61
	4.7.1	1.3. Análise de Tensões Verticais	62
	4.7.2.	Cenário 2	62

		4.7.2.1.	Análise de deslocamentos verticais	62
		4.7.2.2.	Análise de danos	63
		4.7.2.3.	Análise de tensões	63
	4.	7.3. Co	mparação dos resultados dos pavimentos C1 vs C2	63
		4.7.3.1.	Análise dos deslocamentos na base do revestimento	63
		4.7.3.2.	Análise dos deslocamentos no topo da camada de subleito	64
		4.7.3.3.	Análise das deformações permanentes	64
	4.8.	Estima	ativa do tempo de vida útil	65
5.	С	ONCLUS	ÕES E RECOMENDAÇÕES	66
	5.1.	Concl	usões	66
	5.2.	Recon	nendações	67
6.	В	IBLIOGR	AFIA	68
	6.1.	Referé	èncias Bibliográficas	68
	6.2.	Outra	bibliografia consultada	70
Αl	NEX	os		71
	Ane	xo 1- 1º d	dia de contagem	63
	Ane	xo 2- 2º (dia de contagem	65
	Ane	xo 3- 3° (dia de contagem	67
	Ane	xo 5- Da	dos Populacionais (INE)	69
	Ane	xo 6- Cla	ssificação rodovária UTG2	70
	Ane	xo 7- Ma	teriais e símbolos TRH4 -Tabela 13	71
	Ane	xo 8- Tip	os de Pavês	73
	Ane	xo 9- Din	nensionamento <i>DesignPave</i> C1	74
	Ane	xo 10- Di	mensionamento <i>DesignPave</i> C2	74
	Ane	xo 11- Re	elatório KenPave C1	75
	Ane	xo 12- R	elatório KenPave C2	79
	Ane	xo 13- R	esultados dos ensaios laboratoriais	82

ACRÓNIMOS E SIGLAS

AASTHO American Association of State Highway and Transportation Officials

ANE Administração Nacional de Estrada

ASTM American Society for Testing and Materials

BVT Baixo Volume de Tráfego

CBR California Bearing Ratio (Capacidade de Suporte)

CSA Canadian Standards Association

DNIT Departamento Nacional de Infra-estruturas de Transporte

ESAL Equivalent Standard Axle Load

EUA Estados Unidos da América

CMA Concrete Manufacturers Association

CMAA Concrete Mansory Association of AustraliaSADC Southern African Development Community

HDM Highway Development and Management

ICPI Interlock Concrete Pavement Institute

INE Instituto Nacional de Estatística

MET Method of Equivalent Thickness

MOPHRH Ministério das Obras Públicas Habitação Recursos Hídricos

PBB Pavimento de Blocos de Betão

PDUL Projecto de Desenvolvimento Urbano e Local

SATCC Southern African Transport Communications Commission)

SDPI Serviço Distrital de Planeamento e Infra-estrutura

TMDA Tráfego Médio Diário Anual

TRH Recomendações Técnicas de Estrada

UTG Urban Transport Guidelines

TRH Technical Recommendations for Highways

LISTA DE FIGURAS

Páginas
Figura 2.1: Esquema ilustrativo sobre classificação rodoviária (Fonte: ANE, 2023)19
Figura 2.2: Representação da transmissão de cargas ao longo da estrutura de
pavimento flexível (Fonte: autor, 2023)21
Figura 2.3: Estrutura do pavimento flexível (Fonte: autor, 2023)22
Figura 2.4: Representação da transmissão de cargas ao longo da estrutura de
pavimento rígido (Fonte: autor, 2023)22
Figura 2.5: Estrutura do pavimento rígido (Fonte: autor, 2023)23
Figura 2.6: Estrutura de pavimento de blocos com base granular (a); Estrutura de
pavimento de blocos com base de solo-cimento (b) (Fonte: autor, 2023)24
Figura 2.7: Blocos de pavê S-A, S-B e S-C, respectivamente (Fonte: CMA, 2009)24
Figura 2.8: Funcionamento da interligação de bloco de pavê (Fonte: ICPI, Tech Spec 4)
28
Figura 2.9: Texturas para assentamento de blocos de pavê sujeitos a tráfego de veículos,
espinha de peixe à 45° e 90° (Fonte: ICPI, Tech Spec 4)28
Figura 2.10: Tipos de lancis verticais tipo barreira Block Block 3 (Fonte: CMA, 2009). 29
Figura 2.11: Lancis galgáveis Block Block 3 (Fonte: CMA, 2009)30
Figura 3.1: Metodologia de estudo de tráfego (Fonte: MOPHRH, 2021)31
Figura 3.2: Curvas de dimensionamento de pavimento Modelo do Israel (Fonte: Ishai,
et. al., 2003)39
Figura 3.3: Catálogo tipo de dimensionamento de pavimento de bloco de betão (Fonte:
UTG2,1987)40
Figura 3.4: Curvas para dimensionamento de base a) e para dimensionamento de sub-
base b) (Fonte: MOPHRH, 2021)41
Figura 3.5: Sistema de multicamadas de pavimento (Huang, 2004)43
Figura 3.6: Pontos de análise e carga por cada roda (Fonte: autor, 2023)43
Figura 3.7: Deformações do pavimento (Fonte: autor, 2003)43
Figura 4.1: Ilustração do troço de intervenção (Fonte: Google Earth, 2023)45
Figura 4.2: Mapa de localização do Município de Marrupa (Fonte: autor, 2023)46
Figura 4.3: Determinação da espessura do pavimento pelas curvas de dimensionamento
do Modelo de Israel (Fonte: Ishai, et. al., 2003)55
Figura 4.4: Determinação da base e sub-base pelas curvas de dimensionamento
mecanístico Sul-Africano (Fonte: MOPHRH, 2021)57

Figura 4.5: Dimensionamento pelo catálogo tipo de dimensionamento de pavimento de
bloco de betão pelo método da UTG2 (Fonte: UTG2, 1987)58
Figura 4.6: Estrutura do Pavimento considerado (C2) (Fonte: autor, 2023)59
LISTA DE TABELAS
Tabela 2.1: Granulometria recomendada para areia do leito 26
Tabela 2.2: Granulometria recomendada para areia das juntas verticais
Tabela 2.3: Dimensões dos láncis galgáveis 30
Tabela 2.4: Compactações recomendadas param a construção das camadas de
pavimento30
Tabela 3.1: Períodos de vida útil para estradas de BVT
Tabela 3.2: Faixas típicas atuais de taxas de crescimento total de E80 para diferentes
categorias de estradas (modificado do TRH16, 1991)33
Tabela 3.3: Factor de equivalência para as classes de veículos indicadas no Quadro 3.3
35
Tabela 3.4: Factores de ajuste da carga de projecto 36
Tabela 3.5: Carga por eixo equivalente padrão (ESAX10 ⁶)36
Tabela 3.6: Classes de tráfego segundo à UTG2. 37
Conforme INE (2023), a temperatura média anual oscilou entre 23.1°C e 23.6°C nos
últimos cinco anos e as temperaturas máximas médias variaram entre 30.9°C e 34.0°C
durante esse período. E as temperaturas mínimas médias mantiveram-se entre 14.4°C
e 15.4°C. As temperaturas máximas e mínimas absolutas mostram consistência, com os
valores mais altos registados atingindo 34.0°C e os mais baixos permanecendo em
14.4°C, como ilustra a Tabela 4.146
A precipitação anual dos últimos 5 anos varia de 1000 mm a 2223 mm, com um registo
de 4590 mm, em 2019. O excesso de chuva tem causado enormes prejuízos à
agricultura, que predominantemente é de sequeiro. A humidade relativa média anual é
de 70%. Conforme a Tabela 4.2 (INE, 2023)46
Tabela 4.3: Temperaturas, precipitação e humidade registados na sede distrital. Distrito
de Marrupa, 2017 – 202147
Tabela 4.4: Classificação climática. 47
Tabela 4.5: Tráfego calculado para o período das 6-18 horas no Troço A-B e vice-versa
49
Tabela 4.6: População por ano. 49
Tabela 4.7: Tráfego calculado para 24 horas

Tabela 4.8: Resumo dos resultados dos ensalos dos materiais	.54
Tabela 4.9: Classificação da Fundação	.54
Tabela 4.10: Classificação do subleito (CBR), para o dimensionamento estrutural	de
pavimento	.54
Tabela 4.11: Estrutura de pavimentos pelo Método Australiano	.55
Tabela 4.12: Estruturas de pavimentos pelo método Mecanístico Sul-Africano	.56
Tabela 4.13: Estrutura de pavimento pelo método Sul Africano UTG2	.58
Tabela 4.14: Comparação de resultados de pavimentos por distintos métod	dos
considerados.	.59
Tabela 4.15: Parâmetros de análise das camadas (C1 e C2)	.60
Tabela 4.16: Resumo da análise de danos (Nd) do pavimento C1	.61
Tabela 4.17: Resumo da análise de danos (Nd) do pavimento C2	.63
Tabela 4.18: Deformações permanentes	.65
Tabela 4.19: Tempo de vida útil do pavimento	.65
LISTA DE QUADROS	
Quadro 3.1: Classes de veículos a considerar na contagem de tráfego	.32
LISTA DE GRÁFICOS	
Gráfico 4.1: Estimativa do crescimento populacional por ano (Fonte: autor, 2023)	.50
Gráfico 4.2: Deformações verticais C1 (Fonte: autor, 2023)	.61
Gráfico 4.3: Variações das tensões verticais (Fonte: autor, 2023)	.62
Gráfico 4.4: Deformações Localizadas do Pavimento C2 (Fonte: autor, 2023)	.62
Gráfico 4.5: Variação das tensões C2 (Fonte: autor, 2023)	.63
Gráfico 4.6 : Deformações na base da camada do revestimento (Fonte: autor, 2023).	.64
Gráfico 4.7: Deformações no topo da camada de subleito (Fonte: autor, 2023)	.64
LISTA DE EQUAÇÕES	
Eq.3.1 Taxa de Crescimento	.34
Eq.3.2 Estimativa dos eixos padrão equivalentes por classe	.34
Eq.3.3 Estimativa dos eixos padrão equivalentes acumulados	.35
Eq.4.1 Danos por <i>rutting</i>	.44
Eq.4.5 Danos por fadiga	.44

CAPÍTULO I

1. INTRODUÇÃO

1.1. Contextualização

Explorar a história da pavimentação é como embarcar em uma viagem pelos registos da humanidade, abarcando desde a colonização de terras até a expansão das fronteiras, a troca de mercadorias e ideias, a influência cultural e religiosa, até o crescimento das cidades e o avanço da civilização. Isso leva a reflectir sobre a importância das estradas desde tempos remotos, na sua necessidade para a mobilidade e a realização de actividades comerciais.

De acordo com Balbo (2007), com a crescente necessidade de expansão de territórios, os romanos aprimoraram as suas técnicas de pavimentação, que incluíam escavação do terreno natural, uso de lastro de pedras, camada de pedras fragmentadas e aglomeradas com cal, areia, argila e pozolana, camada de pedras miúdas impermeabilizadas, e rochas basálticas na superfície.

Hoje em dia, a construção de estradas é uma combinação de materiais e técnicas avançadas para garantir durabilidade, segurança e baixa manutenção. Padrões e directrizes, como o TRH14, são seguidos para o projecto e construção de estradas pavimentadas, levando em consideração factores como tráfego, clima e o uso pretendido.

Diante do pressuposto, o presente trabalho surge como uma resposta à necessidade premente de melhoria da Rua 04 de Outubro, localizada no município de Marrupa, na província de Niassa em Moçambique. Uma região cujo desenvolvimento está intrinsecamente ligado à sua infra-estrutura viária, a práticas comerceia e da agricultura. Outrossim, ao longo dos anos tem sido uma via preponderante na conectividade local, servindo como uma artéria para o acesso a serviços essenciais e ao centro urbano. Não obstante, as condições dessa estrada deixam muito a desejar nos últimos tempos, comprometendo a mobilidade eficiente e a qualidade de vida dos residentes, os desafios enfrentados incluem a falta de pavimentação adequada, problemas de drenagem e a ausência de um plano estratégico de infra-estrutura viária.

Neste víeis, o dimensionamento adequado e a implementação de soluções sustentáveis não apenas melhorarão as condições da via, idem terão um impacto directo no desenvolvimento socioeconómico da região.

De forma sucinta, este projecto prospecta, fornecer uma abordagem fundamentada para aprimorar a infra-estrutura viária da Rua 04 de Outubro, promovendo a acessibilidade, a segurança viária, contribuindo desta forma para o crescimento económico e o bem-estar dos munícipes daquela urbe.

1.2. Problema

A região de Marrupa, enfrenta desafios relativamente a acessibilidade e mobilidade devido à falta de uma infra-estrutura rodoviária em condições para o efeito. Com um baixo volume de tráfego e necessidades específicas da região, é essencial desenvolver um pavimento que atenda às condições locais e promova a durabilidade, segurança e eficiência. A partir destas constatações, suscita-se a seguinte questão: Como dimensionar um pavimento rodoviário municipal economicamente viável, sustentável e resiliente, adequado para atender às necessidades da região do município de Marrupa, considerando as características especificas da comunidade, as condições do solo e as demandas de mobilidade?

1.3. Justificativa

O dimensionamento de um pavimento rodoviário adequado é fundamental para melhorar a acessibilidade, a segurança e a qualidade de vida de uma região. A abordagem económica e sustentável garantirá que os recursos sejam utilizados eficientemente, enquanto a consideração do crescimento futuro ajudará a criar uma infra-estrutura resiliente. O estudo contribuirá para a mobilidade e o desenvolvimento sustentável da região, atendendo às necessidades, condições de demandas e mobilidade de maneira eficaz.

1.4. Objectivos

1.4.1. Objectivo Geral

Dimensionar a estrutura de pavimento de uma estrada municipal, do município de Marrupa.

1.4.2. Objectivos Específicos

- a) Caracterizar as condições actuais da via;
- b) Determinar as características geotécnicas e climáticas da região que influenciarão a selecção de materiais e o projecto do pavimento;
- c) Levar em conta a possibilidade de crescimento futuro da comunidade, garantindo durabilidade a longo prazo;

- d) Determinar as espessuras de pavimento recorrendo a diversos métodos;
- e) Propor uma solução de dimensionamento de pavimento que seja económica.

1.5. Metodologia de pesquisa

Este capítulo descreve todos os materiais, métodos, assim como todos os aspectos relevantes tidos em consideração no âmbito da materialização realização deste trabalho.

1.5.1. Revisão Bibliográfica e Consultas

- Revisão de Literatura: analisar livros, artigos académicos, e dissertações relevantes para embasar teoricamente o projecto.
- Consulta à Internet: realizar pesquisas online em base de dados académicos, sites de instituições governamentais, e fontes confiáveis relacionadas a infraestrutura viária, dimensionamento de estradas, e melhores práticas em projectos similares.

1.5.2. Colecta de Dados

- Dados de Tráfego: Realizar estudos de tráfego para avaliar as condições atuam de mobilidade da Rua 04 de Outubro, incluindo contagens de veículos.
- Amostras de Solos: Colectar amostras representativas de solos para ensaios geotécnicos, visando avaliar a capacidade de suporte do solo e fornecer informações cruciais para o dimensionamento adequado.
- Consulta a Docentes: consulta aos professores e especialistas em engenharia civil para obter orientações e sugestões técnicos.

1.5.3. Uso de Geoprocessamento

 Utilizar programas de Geoprocessamento, como Arcmap na sua versão 10.3, para criar mapas temáticos, analisar dados geoespaciais, e visualizar informações relevantes para o projecto.

1.5.4. Análise e Planeamento

- Análise dos Dados Colectados em Campo: Processar e analisar dados de tráfego, resultados dos ensaios geotécnicos, e informações obtidas por meio do Geoprocessamento.
- Desenvolvimento do Plano de Dimensionamento: Com base nos dados analisados, elaborar um plano de dimensionamento que leve em consideração as necessidades da comunidade, tráfego previsto, e padrões de uso da estrada.

1.5.5. Processamento dos dados

 Na posse dos dados e com o plano de dimensionamento estabelecido, é feita determinação das espessuras e das camadas que constituem o pavimento por diferentes métodos (Israel, UTG2, mecanístico Sul-Africano e análise mecanísta pelo software *KenPave*).

1.5.6. Proposta de Soluções Sustentáveis

 Identificar e propor soluções sustentáveis, incluindo opções de pavimentação viáveis.

1.5.7. Validação dos resultados

 Consulta final aos especialistas para revisão e validação do plano de dimensionamento proposto.

1.5.8. Relatório Final

 Elaborar um relatório final que documentará todas as etapas da pesquisa, análises, resultados, conclusões e recomendações.

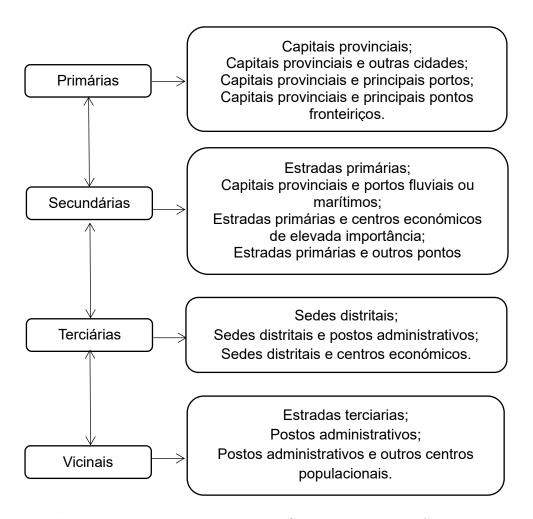
1.6. Estrutura do trabalho

CAPÍTULO I: São apresentadas os aspectos introdutórios e expostos os objectivos, o problema, a justificativa e por fim é apresenta-se a metodologia de pesquisa;

CAPÍTULO II: Descreve-se o referencial teórico, debruçando em torno dos demasiados temas que nortearam a pesquisa referente;

CAPÍTULO III: São expostos os métodos de dimensionamento e os pressupostos que cada método leva em consideração para sua melhor aplicação;

CAPÍTULO IV: Neste capítulo é apresentada a contagem de tráfego, tratamento de dados e o dimensionamento estrutural das camadas que compõe o pavimento;


CAPÍTULO V: Sendo este o último capítulo, traz as conclusões do trabalho onde também se encontram as recomendações para trabalhos futuro.

CAPÍTULO II

2. REVISÃO BIBLIOGRÁFICA

2.1. Classificação de estradas

De acordo com MOPHRH (2021), a rede de estradas de Moçambique é gerida pela ANE, IP e supervisionada pelo Ministério das Obras Públicas. As estradas são classificadas em nacionais (estradas primárias e secundárias) e regionais (terciárias e vicinais). As estradas urbanas e as não classificadas estão sob controlo do conselho municipal e Administrações Distritais, respectivamente. Os municípios são responsáveis pela manutenção das estradas urbanas dentro de seus limites geográficos, excepto as estradas primárias e secundárias. A principal diferença entre as estradas geridas pela ANE, IP e as estradas urbanas municipais é o volume de tráfego.

Figura 2.1: Esquema ilustrativo sobre classificação rodoviária (Fonte: ANE, 2023)

2.2. Pavimentos Rodoviários

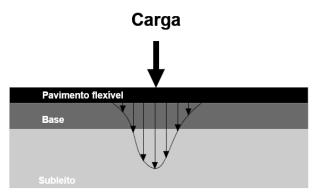
Na perspectiva de Sousa (1980), pavimento é a superestrutura, no caso de rodovias, aeroportos, ruas etc. Constituídas por um sistema de camadas de espessuras finitas, assentes sobre um semi-espaço considerado teoricamente como infinito, a infraestrutura ou terreno de fundação. De um modo geral, essa infra-estrutura é designada subleito.

Por sua vez, Bernucci et al (2006), ampliam essa definição, enfatizando que o pavimento é uma estrutura complexa, de múltiplas camadas e espessuras finitas, construída sobre a superfície final de terraplenagem, destinada técnica e economicamente a resistir aos esforços oriundos do tráfego de veículos e do clima, e a propiciar aos usuários melhoria nas condições de rolamento, com conforto, economia e segurança.

Ademais Reis (2009), complementa essa perspectiva ao destacar o pavimento como a estrutura construída sobre um terreno terraplanado, cuja função vai além do suporte de cargas, também na redistribuição de esforços para a infra-estrutura e a busca por condições satisfatórias de conforto, economia e segurança como parte integrante da definição de pavimento. Essa visão enfatiza a interconexão entre a estrutura do pavimento e seu impacto no comportamento das cargas.

A despeito das minúcias nas definições, todas afluem na substância primacial, de que o pavimento é uma estrutura composta por camadas finitas, projectada para resistir aos esforços do tráfego de veículos e proporcionar condições de rolamento satisfatórias. A relação entre a estrutura do pavimento e sua base, seja ela o subleito, a terraplenagem ou a infra-estrutura, é uma característica comum que destaca a importância da fundação na capacidade de suporte e desempenho do pavimento.

2.3. Classificação dos Pavimentos


De acordo com Souza (1980), de modo geral, os pavimentos se dividem em duas grandes famílias, que podem ser classificados como pavimentos flexíveis e rígidos.

A semelhança de Yoder e Witczak (1975), nos EUA, dois clássicos da literatura internacional, também se restringem aos termos rígido e flexível, evidenciando a maneira como são distribuídos os esforços ao longo da profundidade de suas estruturas.

2.3.1. Pavimentos flexíveis

Conforme as directrizes do Manual de Pavimentação do DNIT (2006), Pavimentos flexíveis são constituídos por uma camada superior de asfalto, chamada revestimento, que é suportada por camadas de base, sub-base e reforço do subleito. Essas camadas

são compostas por materiais granulares, solos ou misturas de solos, sem a adição de agentes cimentantes. Quando sujeitas a cargas, essas camadas respondem com deformações elásticas, o que significa que a carga é distribuída de forma relativamente uniforme e não causa pressões localizadas.

Figura 2.2: Representação da transmissão de cargas ao longo da estrutura de pavimento flexível (Fonte: autor, 2023).

Sousa (1980), afiança que em um pavimento flexível (o de geometria mais complexa), podem ser encontradas as seguintes camadas:

Revestimento- camada destinada a resistir directamente às acções do tráfego, a impermeabilizar o pavimento, a melhorar as condições de rolamento, no que se refere ao conforto e à segurança e a transmitir, de forma atenuada, as acções do tráfego às camadas inferiores.

Base- camada destinada a resistir às acções dos veículos e transmiti-las, de forma conveniente, ao subleito.

Sub-base- camada complementar à base, com as mesmas funções esta é executada quando, por razões de ordem económica, for conveniente reduzir a espessura da base.

Reforço do subleito- camada existente, no caso de pavimentos muito espessos, executada com o objectivo de reduzir a espessura da própria sub-base.

Regularização do subleito- camada de espessura variável, executada quando se torna necessário preparar o leito da estrada para receber o pavimento; a regularização não constitui, propriamente, uma camada de pavimento, pois tem espessura variável, podendo ser nula em um ou mais pontos da secção transversal

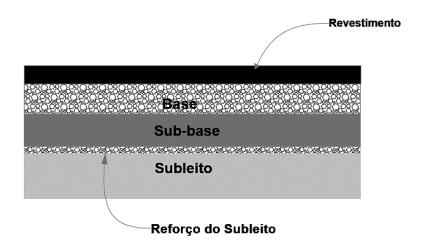
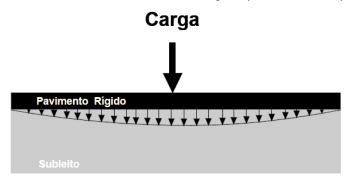



Figura 2.3: Estrutura do pavimento flexível (Fonte: autor, 2023)

2.3.2. Pavimentos rígidos

De acordo com Bernucci et al. (2010), os pavimentos rígidos são aqueles em que o revestimento é constituído por placas de cimento Portland. Este revestimento possui uma elevada rigidez em comparação com as camadas inferiores e a sua espessura é fixada em função da resistência à flexão das placas. Consequentemente, absorve praticamente todas as tensões resultantes da carga aplicada.

Segundo Balbo (2009), estas placas de cimento Portland são assentes sobre o solo de fundação ou uma sub-base, desempenhando simultaneamente as funções de revestimento e base. Estas placas podem ou não ser reforçadas com barras de aço, de acordo com as exigências técnicas do projecto. E são formados, predominantemente, por camadas que trabalham sensivelmente à tracção (Souza, 1980).

Figura 2.4: Representação da transmissão de cargas ao longo da estrutura de pavimento rígido (Fonte: autor, 2023).

2.3.2.1. Estrutura do pavimento Rígido

Igualmente Sousa (1980), descreve a estrutura do pavimento rígido da seguinte forma:

Placa de betão- camada que desempenha ao mesmo tempo o papel de revestimento e de base;

Sub-base- camada construída, algumas vezes, com objetivo de evitar o bombeamento dos solos do subleito.

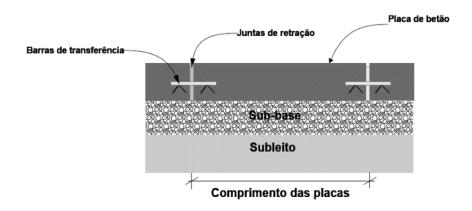
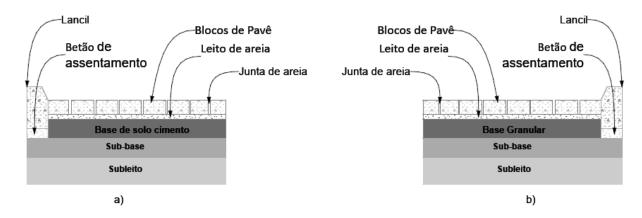


Figura 2.5: Estrutura do pavimento rígido (Fonte: autor, 2023).


2.3.3. Pavimentos de blocos de betão (PBB)

MOPHRH (2021), enquadra os PBB, como sendo semi-rígidos, uma vez que o revestimento tem a capacidade de absorver parte das solicitações a que está sujeita. Todavia, Knapton (1977), descreve que PBB apresentam comportamento como camada de revestimento, muito similar às camadas de betão asfáltico, impondo pressões verticais nas camadas subjacentes de mesma intensidade, tal facto que coloca uma limitação enorme na classificação tradicional, pois os pavimentos com revestimento em blocos de betão vão se apresentar rígido, não pelo facto de os blocos serem de betão, mas em função do seu tipo de base. Nesta mesma ordem de ideias, Balbo (2007), enquadra-os como sendo rígidos ou flexíveis, se a base for de betão, compactado ou vibrado, a resposta estrutural será rígida: baixas deflexões e baixas pressões nas camadas de fundação. Se a base for de material mais flexível, como diversos materiais granulares (britas graduadas, macadames hidráulicos, bicas corridas, solo-brita.), a resposta mecânica será flexível, com grandes pressões sobre a fundação.

No entanto, as classificações variam dependendo da perspectiva de como esses pavimentos se comportam em resposta às cargas e à natureza da base subjacente. A classificação como rígido ou flexível é influenciada pela rigidez relativa do revestimento e da base.

2.3.3.1. Estrutura dos Pavimentos de blocos de betão

Serão examinados dois cenários de configuração do pavimento: um envolvendo a base e sub-base compostas por material granular (representado na Figura 4-a), enquanto o segundo incorpora uma base construída com solo estabilizado quimicamente (ilustrado na Figura 4-b). No entanto, é comum nos materiais de referência encontrar a descrição da base como a camada superior de blocos de concreto, seguida pelo leito de areia, a sub-base e, por fim, o leito da fundação (MOPHRH, 2021).

Figura 2.6: Estrutura de pavimento de blocos com base granular (a); Estrutura de pavimento de blocos com base de solo-cimento (b) (Fonte: autor, 2023).

2.3.3.2. Forma dos Blocos

De acordo CMA (2009), os blocos de pavês de maior aplicação em estradas têm normalmente as formas geométricas apresentadas na Figura 2.7. E por uma questão de uniformização da classificação dos blocos de pavês na região da SADC, recomenda-se a adopção da classificação usada na África do Sul, conforme ilustrado abaixo (MOPHRH, 2021).

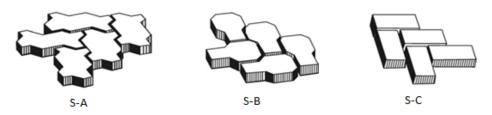


Figura 2.7: Blocos de pavê S-A, S-B e S-C, respectivamente (Fonte: CMA, 2009)

Segundo MOPHRH (2021), os blocos de pavê da classe S-A permitem uma interligação geométrica entre todas as faces verticais ou lados de elementos adjacentes. Em contrapartida os blocos de pavê da classe S-B, permitem a interligação geométrica apenas entre algumas faces verticais de elementos adjacentes. Por outro lado, os blocos,

S-C, que não permite a interligação geométrica entre quaisquer faces verticais ou lados de elementos adjacentes.

2.3.3.3. Resistência

Para MOPHRH (2021), a resistência à compressão simples dos blocos de pavê, determinada em regime saturado, é fundamental para a sua capacidade de carga. Em Moçambique e na África do Sul, a resistência especificada é de 25 MPa, significativamente superior aos tijolos maciços (7 MPa), garantindo a resistência necessária para suportar o tráfego e a abrasão. Para pavimentos especiais, resistências de 30 MPa, 35 MPa ou até 50 MPa podem ser consideradas, dependendo das necessidades específicas.

2.3.3.4. Areia para o Leito

MOPHRH (2021), com o objectivo de providenciar um leito uniforme para os blocos, deve ser executado um leito de areia com cerca de 25 ± 10mm de espessura após compactação. Esta camada é colocada solta e os blocos são compactados contra ela, resultando na subida da areia para as juntas entre os blocos.

2.3.3.5. Influência da Forma dos Grãos de Areia

Nas visões de Shackel (1990), Beaty (1996) e Yaginuma et al. (2000), destacam que a forma dos grãos de areia no colchão de assentamento tem um impacto directo no comportamento e na deformação dos pavimentos intertravados. Partículas angulares, de acordo com essas fontes, têm um coeficiente de atrito maior, o que melhora a distribuição dos esforços. No entanto, a presença de silte e argila na areia é uma característica que pode afectar negativamente o desempenho do colchão.

2.3.3.6. Qualidade do Colchão de Areia e Defeitos Prematuros

Grande parte dos pesquisadores, como Müller (2005), considera que os defeitos prematuros do pavimento intertravado estão directamente ou indirectamente relacionados com a qualidade ou má execução do colchão de areia e rejuntamento.

2.3.3.7. Granulometria Adequada

MOPHRH (2021) destaca que, quanto à granulometria, relevando a experiência em Moçambique, a areia grossa lavada do rio tem dado resultados positivos. Contudo, recomenda-se o uso dos fusos granulométricos indicados na Tabela 2.1, quando testada

de acordo com os peneiros da ASTM C33 e CSA A23.1 FA1. Não é permitido o uso da areia das juntas no leito.

Tabela 2.1: Granulometria recomendada para areia do leito

Gradation for Bedding Sand				
ASTM C	33	CSA A23.1 FA1		
Sieve Size	Percent Passing	Sieve Size	Percent Passing	
3/8 in.(9.5 mm)	100	10.0 mm	100	
No. 4(4.75 mm)	95 to 100	5.0 mm	95 to 100	
No. 8(2.36 mm)	80 to 100	2.5 mm	80 to 100	
No. 16(1.18 mm)	50 to 100	1.25 mm	50 to 100	
No. 30 (0.6mm)	25 to 60	630 µm	25 to 65	
No. 50 (0.3 mm)	5 to 30	315 µm	10 to 35	
No. 100 (0.15 mm)	0 to 10	160 µm	2 to 10	
No. 200 (0.075 mm)	0 to 1	80 µm	0 to 1	

Fonte: MOPHRH, (2021).

2.3.3.8. Areia para as Juntas Verticais

De acordo com MOPHRH (2021),a areia para as juntas verticais, quando testada de acordo com os peneiros da ASTM C144 e CSA A179, deve ter as granulometrias indicadas na Tabela 2.2. A areia deverá estar seca quando for espalhada e deverá ser coberta quando armazenada em obra para evitar o contacto com a água da chuva. O material de enchimento das juntas deverá estar livre de elementos nocivos, tais como sais solúveis e outros contaminantes.

Tabela 2.2: Granulometria recomendada para areia das juntas verticais

ASTM (C33	CSA A23.1 FA1		
Sieve Size	Percent Passing	Sieve Size	Percent Passing	
No. 4(4.75 mm)	100	5.0 mm	100	
No. 8(2.36 mm)	95 to 100	2.5 mm	90 to 100	
No. 16(1.18 mm)	70 to 100	1.25 mm	85to 100	
No. 30 (0.6mm)	40 to 75	630 µm	65to 95	
No. 50 (0.3 mm)	10 to 35	315 µm	15 to 80	
No. 100 (0.15 mm)	2to 15	160 µm	0 to 35	
No. 200 (0.075 mm)	0 to 5	80 µm	0 to 10	

Fonte: MOPHRH, (2021).

2.3.3.9. Selecção do Tipo de Pavê e Textura

Para uma melhor percepção do funcionamento de um pavimento de pavê, MOPHRH (2021), apresenta alguns conceitos relevantes, como: interligação ou encaixe, traduzido da expressão técnica "interlock", que é a falta de mobilidade que um bloco de pavê oferece em relação a outro, sendo uma propriedade crítica no desempenho estrutural deste tipo de pavimentos. O mesmo autor, destaca a importância da atenção no acto de dimensionamento ou na construção de um pavimento de pavê, que deve de garantir três tipos de interligação: vertical, rotacional e horizontal, conforme ilustrados na Figura 2.8.

2.3.3.10. Interligação Vertical

A interligação vertical é conseguida por atrito, pela transferência de cargas entre elementos adjacentes através da areia nas juntas.

2.3.3.11. Interligação Rotacional

A interligação rotacional é mantida por os blocos de pavê terem uma espessura suficiente, estarem em conformidade com a textura recomendada e tolerâncias admissíveis, colocados juntos uns dos outros e travados das forças laterais dos pneus através de lancis. A interligação rotacional também é conseguida se o pavimento for abaulado, permitindo que a superfície ganhe rigidez e desenvolva encaixes quando o pavimento estiver sujeito a cargas dos veículos, (MOPHRH, 2021).

2.3.3.12. Interligação Horizontal

A interligação horizontal é primeiramente conseguida pelo uso de texturas que dispersam as forças provenientes de travagens, mudanças de direcção e aceleração de veículos. A textura do tipo espinha de peixe (Figura 2.9) é a mais recomendada para manter a interligação. Este tipo de textura foi testado e demonstrou grande capacidade de resistência aos movimentos laterais quando comparado com outros tipos de texturas, sendo a recomendada para pavimentos sujeitos a tráfego de veículos.

Contudo, a interligação vertical, rotacional e horizontal desempenha um papel fundamental na integridade estrutural dos pavimentos de pavê. Cada tipo de interligação é crucial para garantir a estabilidade e a durabilidade desses pavimentos. Portanto, compreender como esses tipos de interligação são alcançados e mantidos é essencial para o sucesso do projecto de pavimentos intertravados, (MOPHRH, 2021).

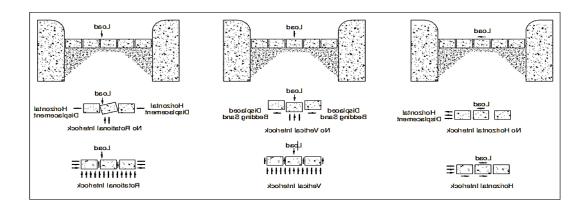
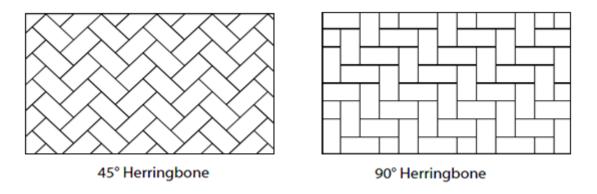



Figura 2.8: Funcionamento da interligação de bloco de pavê (Fonte: ICPI, Tech Spec 4)

Figura 2.9: Texturas para assentamento de blocos de pavê sujeitos a tráfego de veículos, espinha de peixe à 45° e 90° (Fonte: ICPI, Tech Spec 4).

2.4. Inclinações transversais e longitudinais

Relativamente a estradas, MOPHRH (2021), recomenda que a pendente longitudinal de um pavimento de blocos de pavê seja no mínimo de 1%, significa que, para cada 100 metros ao longo da estrada, a elevação deve mudar em pelo menos 1 metro. Isso é importante para garantir uma drenagem adequada e evitar a acumulação de água na superfície da estrada. E que a inclinação transversal mínima seja de 2%, significa que, para cada 100 metros de largura da estrada, a elevação deve mudar em pelo menos 2 metros. Isso também é crucial para a drenagem, pois ajuda a direccionar a água para os lados da estrada, em vez de permitir que ela se acumule na superfície.

2.5. Drenagem

De acordo com CMAA (2014), é imperativo assegurar uma adequada gestão das águas pluviais, tanto em termos superficiais, subterrâneos, a fim de garantir o desempenho satisfatório do pavimento. A necessidade de lidar com questões relacionadas à drenagem deve ser levada em consideração durante todas as fases do projecto, especificação e construção. Durante a fase inicial de vida do pavimento, há a possibilidade de infiltração de água da chuva através das juntas. No entanto, à medida que detritos se acumulam nessas juntas, a permeabilidade do pavimento tende a diminuir consideravelmente.

Sendo assim, é importante observar que o projecto de drenagem não é o foco principal deste trabalho e, portanto, não será discutido em detalhes. Para uma análise mais aprofundada sobre o projecto de drenagem, recomenda-se consultar o TRH 15, assim como é abordado no procedimento de projecto estrutural, conforme estabelecido em UTG 2, 1987.

2.6. Lancis e valetas

Os lancis podem ser verticais (ou semi-verticais) tipos barreira, galgáveis. A Figura 8 ilustra tipos de lancis verticais, do tipo barreira, padronizados.

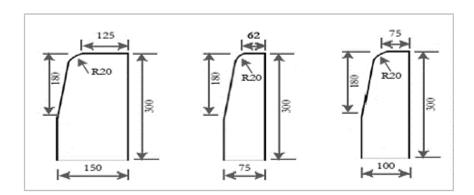


Figura 2.10: Tipos de lancis verticais tipo barreira Block Block 3 (Fonte: CMA, 2009).

O lancil central na Figura 2.10 pode apresentar-se no mercado com 4 variações de dimensão, de acordo com a Tabela 2.4.

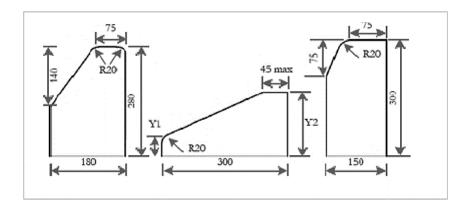


Figura 2.11: Lancis galgáveis Block Block 3 (Fonte: CMA, 2009)

Tabela 2.3: Dimensões dos láncis galgáveis

Dimensão	Y 1 (mm)	Y 2 (mm)
а	50	150
b	75	175
С	100	200
d	125	225

Fonte: CMA, (2009).

2.7. Definição dos termos usados em pavimentos de blocos

A tabela abaixo mostra as várias camadas possíveis em pavimentos de blocos de betão. Pode se ver na estrutura que as propriedades estruturais delas são similares a da camada de base da estrada (UTG2, 1987).

Tabela 2.4: Compactações recomendadas param a construção das camadas de pavimento

Pavement Layer	Compacted Density		
Subbase (Uppear and Lower)	95% MOD. AASHTO		
Selected Subgrade (Cohesive)	95% MOD. AASHTO		
Selected Subgrade (Non Cohesive)	100% MOD AASHTO		
Subgrade			
(Within 200 mm of Selected Subgrade)	90% MOD. AASHTO		
(Within Material Depth)	85% MOD. AASHTO		
Fill	90% MOD. AASHTO		

Fonte: DRAFT UTG2, (1987).

CAPÍTULO III

3. METODOLOGIAS DE DIMENSIONAMENTO DE PAVIMENTOS DE BLOCOS DE BETÃO (PBB)

3.1. Contextualização

De acordo com Senço (2007), o dimensionamento de pavimentos envolve a definição das espessuras das camadas para que a estrutura possa suportar as forças do tráfego e evitar falhas, deformações e desgaste excessivo. O foco está na capacidade de resistir às cargas e manter a integridade do pavimento.

Consagrando da mesma perspectiva, Branco et al. (2011) também destacam a importância do dimensionamento, mas ampliam o escopo ao considerar não apenas as espessuras das camadas, mas também a composição dos materiais. Eles enfatizam a necessidade de atender à padrões de qualidade e durabilidade para evitar deteriorações que ultrapassem limites aceitáveis ao longo da vida útil do pavimento.

Ambas as visões compartilham a preocupação com a segurança e a eficiência das vias, bem como a optimização de recursos ao longo do tempo, enfatizando a necessidade de considerar cuidadosamente as características das camadas e dos materiais para atingir um desempenho de pavimento satisfatório e duradouro.

3.2. Estudo de tráfego

A metodologia de estudo de tráfego adoptada é de acordo com o manual do PDUL (MOPHRH, 2021), sendo resumidamente ilustrado pelo diagrama abaixo:

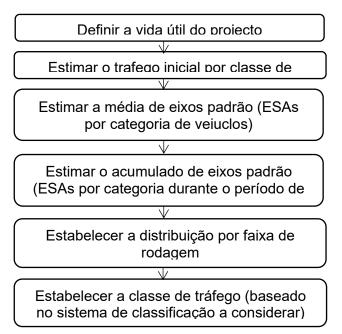


Figura 3.1: Metodologia de estudo de tráfego (Fonte: MOPHRH, 2021).

3.2.1. Definição da vida útil da estrada

O período de vida útil é definido como o intervalo de tempo em anos considerado apropriado para o pavimento da estrada funcionar antes de atingir um valor terminal de serventia aceite após a qual uma grande reabilitação ou reconstrução seria necessária, PDUL (MOPHRH, 2021). Ainda, segundo o mesmo manual, sugere os períodos de vida útil indicados na Tabela 3.1.

Tabela 3.1: Períodos de vida útil para estradas de BVT.

Confiança nos dados do projecto	Importância/nível de serviço		
	Alta	Baixa	
Alta	10 anos	10-15 anos	
Baixa	10-15 anos	15-20 anos	

Fonte: MOPHRH, (2021).

3.2.2. Tráfego inicial

De acordo com o manual do PDUL (MOPHRH, 2021), as contagens devem ser realizadas nos dois sentidos tendo em conta as distintas classes estabelecidas, conforme a tabela a seguir e preenchidos de acordo com o modelo de contagem da ANE que consta no Anexo 1.

Quadro 3.1: Classes de veículos a considerar na contagem de tráfego

	Classes	Tipos de Veículos	Descrição		
А	⊕		Veículos ligeiros simples		
В	6 0	Ligeiros	Veículos de mercadorias vulgarmente designados por "pick-up"		
С			Veículos ligeiros de pessoas com capacidade inferior a 20 pessoas		
D			Veículos pesados de passageiros		
Е			Veículos pesados de mercadoria com 2- eixos rodado duplo no eixo traseiro		
F		Pesados	Veículos de pesados de mercadoria com 2-4 eixos rodado duplo no eixo traseiro		
G	60 mm		Veículos pesados de mercadoria com mais de 4 eixos		
I	8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Tractores agrícolas com ou sem reboque		
I		Biciclos	Motocicletas (Motorizadas)		

Fonte: MOPHRH, (2021)

3.2.3. Estimativa de crescimento por classe

Segundo o manual do PDUL (MOPHRH, 2021), a análise seguinte é apurar o tráfego total do projecto baseada em estimativas de crescimento para cada classe de veículo. Para estimar tal crescimento, primeiro é necessário dividir o tráfego nos termos das seguintes categorias:

- Tráfego normal tráfego que passaria ao longo da estrada ou trilhos existentes,
 mesmo se nenhuma melhoria ao pavimento fosse considerada.
- Tráfego desviado tráfego que muda de outra rota (ou modo de transporte) para a estrada do projecto devido ao pavimento melhorado, mas ainda usa a mesma origem e destino. Este tráfego será determinado por contagens de origem e destino.
- Tráfego gerado tráfego adicional que ocorre em resposta a melhoria da estrada.
 É um acréscimo ao crescimento normal do tráfego previsto. O crescimento do tráfego é estimado em função da taxa de crescimento anual, que, de acordo com as especificações TRH4 Tabela 10, situa-se entre 2% e 15%.

Tabela 3.2: Faixas típicas atuais de taxas de crescimento total de E80 para diferentes categorias de estradas (modificado do TRH16, 1991)

Roady Category	Α	В	С	D
Range of growth rates (%)	2-12	2-12	2-10	2-15
Typical growth rates (%)	4	4	4	-*

Fonte: DRAFT TRH4, (1996)

Existem várias maneiras de estimar o crescimento do tráfego de veículos. Factores como o PIB, urbanização, uso e ocupação do solo, bem como a disponibilidade de transportes públicos, podem influenciar o aumento da frota de veículos. Por outro lado, uma abordagem particularmente relevante é o uso da taxa de crescimento populacional.

Outrossim, um dos modelos de previsão que pode ser adoptado é o crescimento populacional, desta forma, ao realizar esta previsão, pode-se antecipar quantas pessoas estarão presentes numa dada região, sendo assim, à medida que essa população cresce, mais indivíduos precisarão se deslocar para actividades diárias, como trabalho, escola e compras. Isso, por sua vez, gera uma demanda adicional por transporte, levando a mais viagens e, consequentemente, a mais veículos nas estradas. Portanto, os modelos de crescimento populacional são fundamentais para compreender como a expansão demográfica afecta directamente os padrões de tráfego em uma região.

^{*}Greater uncertainly in growth rate

Em suma, a taxa de crescimento populacional é frequentemente utilizada como base para essas estimativas com à disponibilidade de dados colectados e disponibilizados por órgãos governamentais, como o Instituto Nacional de Estatística (INE). Esta abordagem é prática e pode fornecer estimativas preliminares do crescimento do tráfego de veículos.

3.2.3.1. Determinação da taxa de crescimento populacional

$$\alpha = \frac{P_f - P_0}{\left(t_f - t_0\right)P_0}$$
 Eq.3.1

Onde:

P_f- população final

P₀- população inicial

t_f- tempo horizonte

to- tempo inicial

α- taxa de crescimento

Essa fórmula fornece uma maneira de quantificar o crescimento populacional em relação ao tempo, o que pode ser usado como um indicador preliminar para estimar o crescimento do tráfego de veículos.

3.2.4. Estimativa dos eixos padrão equivalentes por classe

$$ESAs = TMDA \times FE$$
 Eq.3.2

O Eixo Padrão (ESA) é o eixo de 80 kN ou seja 8.16 toneladas métricas TMDA- é o tráfego médio anual diário

F- é o Factor de Equivalência, que traduz o poder de destruição do veiculo, expresso em números de eixos equivalentes (ESAs), em unidades de 80kN. Este factor pode ser estimado pelas seguintes expressões:

$$F = (\frac{L}{8160})^n$$
 para cargas em kg); ou

 $F = (\frac{L}{80})^n$ para cargas em kN) em que: F = numero de eixos padrao equivalentes (EASs) L = carga no eixo (em kg ou kN); e n = expoente de destruição, recomendado pelo Pavement Design Manual da ANE com sendo 4,5 O Factor de Equivalência apenas é aplicável a veículos pesados, como ilustra a Tabela 3.3.

Tabela 3.3: Factor de equivalência para as classes de veículos indicadas no Quadro 3.1

Classe de Veículo	Α	В	С	D	Е	F	G	Н
Factor de Equivalência (F)	0	0	0.3	2	1.5	5	10	0

Fonte: MOPHRH, (2021)

3.2.5. Estimativa dos eixos padrão equivalentes acumulados

Tendo em conta a metodologia de estudo de tráfego apresentada, após a estimativa dos eixos (ESAs) com os respetivos fatores equivalência de carga, procede-se à estimativa do crescimento do tráfego por categoria de veículos

$$TMADA = 365 \times TMDA \times [(1+r)^{p} - 1]/r$$
 Eq.3.3

Onde: TMADA = Tráfego acumulado de projecto em cada classe de veículos;

TMADA = Tráfego Médio Diário por cada classe de veículo no 1º ano de abertura da estrada;

r = Taxa de crescimento média anual;

P = período de vida da estrada em anos

3.2.6. Distribuição por faixa

A carga de tráfego estimada (Eixos Padrão Acumulados) tem de ser corrigida para a distribuição dos veículos pesados pelas faixas de rodagem, de acordo os factores de ajuste indicados na Tabela 3.4.

Tabela 3.4: Factores de ajuste da carga de projecto

Secção transversal	Largura da faixa	Carga de projecto corrigida (ESA)	Observações
Faixa simples	<3,5	Duplicar a soma dos ESAs em ambas as direcções	A modo de condução neste tipo de secção é muito canalisada
	Min 3,5m mas menor do que 4,5m	A soma dos ESAs em ambas direcções	O trafego em ambas direcções usa a mesma faixa
	Min. 4,5 mas menor que 6m	80% dos ESAs em ambas direcções	Para perpitir a sobreposição no eixo da estrada
	6m ou superior	Total de ESAs na direcção do trafego mais pesado	Minima sobreposição do trafego no eixo da estrada
Mais do que um faixa de rodagem em cada direcção		90% do total dos ESAs na direcção estudada	A maior parte dos veículos usa uma faixa em cada direcção

Fonte: MOPHRH, (2021).

3.2.7. Classes de tráfego do projecto

A classe de tráfego do projecto é determinada tendo em conta o valor acumulado dos eixos padrão. A classificação da SATCC, em vigor na ANE, atribui classes T1 a T8, conforme ilustra a Tabela 3.5.

Tabela 3.5: Carga por eixo equivalente padrão (ESAX10⁶)

	Classe de tráfego										
Carga por eixo euivalente	T1	T2	Т3	T4	T5	Т6	Т7	Т8			
padrão (ESAs)	<0.3	0.3-0.7	0.7-1.5	1.5-3	3-6	6-10	10-17	17-30			

Fonte: SATCC, (1998).

Tabela 3.6: Classes de tráfego segundo à UTG2.

Classe de Tráfego	Eixos Padrão Acumulados Equivalentes (ESAx106)	Descrição
ER	< 0.05	Estradas residenciais
EO	0.05-0.2	Via colectora de tráfego ligeiro, poucos veículos pesados `
EI	0.2-0.8	Via colectora e rota de autocarros de tráfego ligeiro, na maioria automóveis e veículos de entrega leves
E2	0.8-3.0	Volume de tráfego médio, rota de autocarros Estradas secundarias
E3	3.0-12	Volume de tráfego alto e/ou muitos veículos pesados. Estradas primarias
E4	12-52	Volume de tráfego muito elevado e/ou uma proporção elevada de veículos pesados completamente carregados. Estradas primarias

Fonte: DRAFT UTG2, (1987).

3.3. Métodos de dimensionamento de PBB

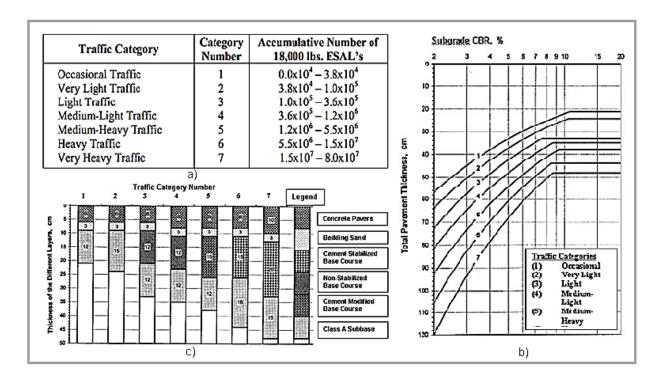
De acordo com Morgado (2012), os "Métodos de Dimensionamento de PBB" se referem a técnicas e abordagens utilizadas para calcular e projetar pavimentos de blocos de betão intertravados, também conhecidos como PBB (Pavimentos de Bloco de Betão). Esses métodos são usados na engenharia civil para determinar a espessura adequada do pavimento, o tipo de bloco a ser usado, a textura de modo a garantir que o pavimento seja capaz de suportar as cargas de tráfego esperadas e que tenha uma vida útil adequada.

Segundo Diogo (2022), para estudo de dimensionamento de pavimentos são propostos três métodos de dimensionamentos cuja base é uso de catálogos e o mecanístico sul Africano, baseado no uso de repetições de cargas e curvas de dimensionamento.

Os métodos de dimensionamento proposto propostos por Diogo (2022) são os seguintes:

- Método Israel;
- Método Sul-Africano da UTG2;
- Método Mecanístico Sul-Africano;

Método empírico-mecanístico.


Para aplicação destes métodos, é necessário o conhecimento essencialmente dos seguintes parâmetros, a saber:

- O Número de operações do eixo padrão (classe/ categoria de tráfego), que é um estudo realizado em pontos estratégicos das vias por forma a reunir um conjunto de informações que permitem uma análise real do tráfego em estudo.
- CBR (CBR de Projecto ou CBR característico do material do subleito), que é, função da força necessária para fazer penetrar, a certa velocidade (1 mm/min), um cilindro de aço de 50 mm de diâmetro, até uma certa profundidade (2,5 e 5,0 mm), num provete de solo compactado num molde e sujeito previamente a imersão em água durante 4 dias, compara as propriedades mecânicas deste solo a uma brita padrão.
- A caracterização climatológica da região (precipitação), pois, o conhecimento sobre o clima, é essencial no dimensionamento de pavimentos, pois impacta a resistência, drenagem e durabilidade das estradas, influenciando a escolha de materiais e métodos construtivos adequados.

3.3.1. Método Israel

Conforme Ishai et al (2003), o método de dimensionamento de pavimento de blocos de pavê do Ministério de Habitação e Construção do é baseado na definição do tráfego, conforme ilustrado abaixo.

O método consiste na tabela a) as curvas de dimensionamento em b) e o ábaco em c). Conhecida a classe de tráfego, este que serve de entrada em a) e por sua vez com o com o CBR do subleito e a categoria já conhecida escolhe se a curva correspondente em b) e por fim determina-se as camadas constituintes do pavimento em c).

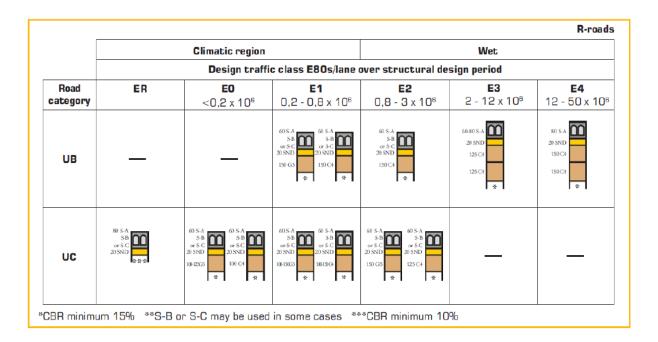


Figura 3.2: Curvas de dimensionamento de pavimento Modelo do Israel (Fonte: Ishai, et. al., 2003).

3.3.2. Método Sul-Africano da UTG2

As estruturas de pavimento sugeridas pelo manual da UTG2 da SATCC são classificadas de acordo com as várias categorias de tráfego esperado acumulado. No entanto, é importante observar que essas especificações consideram valores de resistência do subleito nos limites de CBR = 10 ou 15, o que às vezes pode resultar em um desempenho inferior ao ideal do pavimento projetado. Portanto, o método requer a avaliação da classe do subleito e das condições climáticas como parte do processo de seleção da estrutura de pavimento adequada.

A determinação as camadas do pavimento é feita mediante ao estudo prévio do tráfego (E80), da categoria de estrada e do clima da região com vista a dar entrada a tabela.

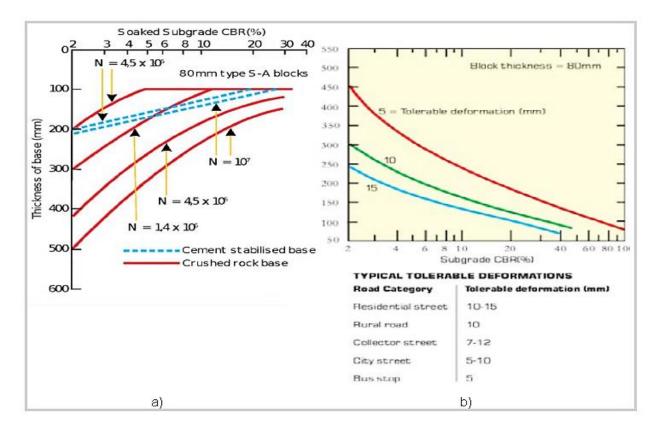


Figura 3.3: Catálogo tipo de dimensionamento de pavimento de bloco de betão (Fonte: UTG2,1987).

3.3.3. Método Mecanístico Sul-Africano

O método mecanístico Sul Africano é baseado nas repetições de carga e curvas de dimensionamentos, como se ilustra as curvas abaixo, tendo em conta para os dados de entrada nos ábacos para bases e sub-bases:

- O tipo de pavê (60, 80 ou 100 mm S-A);
- Características do subleito (CBR);
- Características da base (estabilizada ou granular);
- Categoria de estrada.

Figura 3.4: Curvas para dimensionamento de base a) e para dimensionamento de subbase b) (Fonte: MOPHRH, 2021).

3.3.4. Análise Mecanística pelos *Software KenPave* (Dimensionamento de Pavimentos em Pavê)

O design mecanística de pavimentos intertravados, o conceito fundamental reside na gestão das tensões de compressão no subleito, extensões e deformações críticas, conforme destacado por Shackel (1986b). Contudo, segundo Knapton (1998), quando camadas quimicamente estabilizadas estão presentes na estrutura, torna-se imprescindível a harmonização das tensões de tracção nos materiais. Em relação aos PBBs, conforme salientado por Cruz (2003), a fadiga não se manifesta, uma vez que as juntas impedem eficazmente a propagação das tensões de tração na camada inferior das peças de betão.

No que diz respeito às deformações permanentes, o autor estabelece as seguintes directrizes: antes de se tornar intertravado, um PBB não deve acumular mais de 5 ou 10 mm de deformação permanente em áreas de tráfego urbano e não mais do que 15 a 20 mm em áreas de tráfego rural ou industrial. Em geral, o controle dos afundamentos nas trilhas de rodas é o principal critério de projecto para PBBs.

É de suma importância, ressaltar que as propriedades elásticas dos materiais granulares e dos materiais cimentados são intrinsecamente diferentes, devido às suas propriedades, em destaque o módulo de resiliência (MR). Conforme indicado por Balbo (2007), em uma análise elástica, quanto maior o MR de um material, melhor será sua capacidade de reter os esforços sobre si.

KenPave é um software utilizado para analisar e projetar pavimentos, oferecendo a capacidade de calcular deslocamentos em diferentes camadas, bem como fornecer resultados de deformação de tração horizontal e deformação vertical. Em contraste, DesignPave é um software desenvolvido pela Concrete Masonry Association of Australia (CMAA) com foco no projeto e análise de pavimentos de blocos de betão (PBB), proporcionando uma abordagem simplificada para diversas aplicações desses pavimentos, abrangendo desde residenciais até industriais.

No entanto, as diferenças entre esses dois programas são notáveis. *DesignPave* é especificamente direcionado para pavimentos segmentados de betão, enquanto *KenPave* é uma solução mais versátil, adequada para a análise e projeto de pavimentos de modo geral. Ele leva em consideração uma variedade de variáveis importantes no projeto e tem a capacidade de lidar com mais camadas de pavimento. No contexto deste estudo, *KenPave* será a ferramenta utilizada para realizar o cálculo e a visualização das tensões, deslocamentos e extensões necessárias.

3.3.4.1. Modelo considerado para análise

De acordo com MPORPH (2021), para calcular as tensões e facilitar a análise numa estrutura de multicamadas, as camadas são convertidas numa única camada de espessura equivalente, homogénea, com uma única propriedade do material. Este procedimento é conhecido como o "Method of Equivalent Thickness" (método de espessura equivalente) (MET), que foi originalmente desenvolvido por Odemark (1949).

O método avalia o desempenho do pavimento de blocos de betão (PBB) com base em critérios que incluem deflexões e deformações permanentes. De acordo com Shackel (2002a), os PBBs podem normalmente suportar deflexões muito maiores do que pavimentos convencionais sem perder a funcionalidade.

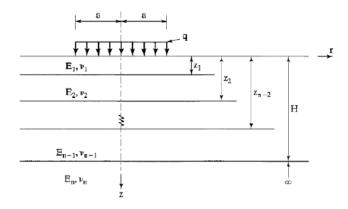


Figura 3.5: Sistema de multicamadas de pavimento (Huang, 2004).

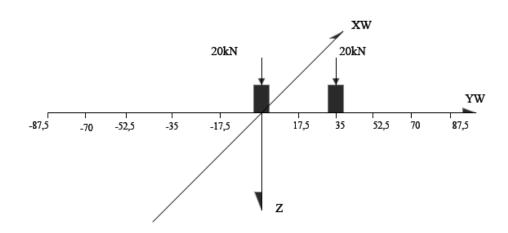


Figura 3.6: Pontos de análise e carga por cada roda (Fonte: autor, 2023).

3.3.4.2. Deformações permanentes

A partir das deformações localizadas (deslocamentos verticais δ), determina-se as deformações permanentes, fazendo a soma da diferença entre a deformação localizada de uma camada e da camada superior. Os valores positivos correspondem a deformações de compressão e os negativos a tracção.

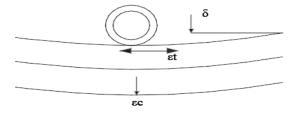


Figura 3.7: Deformações do pavimento (Fonte: autor, 2003).

3.3.4.3. Determinação de dano por rutting

Conforme Behiry (2012), em sua análise de danos por fadiga em pavimentos, apresenta a seguinte relação para análise de danos por *rutting:*

$$N_d = f_4 * \varepsilon_c^{-f_5}$$
 Eq.4.1

Onde: N_d= número de repetições de carga que causariam dano por rutting

εc=Deformação por compressão no topo da camada de subleito (correspondente as deformações verticais, devido a tensão principal maior e menor)

f4, f5= constantes do material (Instituto do Asfalto: $f4 = 1,365.10^{-9}$, f5 = 4.477)

3.3.4.4. Determinação de dano por fadiga

Conforme Behiry (2012), em sua análise de danos por fadiga em pavimentos, apresenta a seguinte relação para análise de danos por fadiga:

$$N_f = f_1 * \varepsilon_t^{-f_2} * E_{AC}^{-f_3}$$
 Eq.4.5

Onde: N_f= Número de repetição de cargas que causariam dano por fadiga

εt= Deformação por tração na base da camada asfáltica (correspondente as deformações horizontais principais a profundidade de 5cm)

f1, f2, f3= constantes do material (Instituto do Asfalto: f1= 0.0796, f2= 3.291, f3= 0.854)

CAPÍTULO IV

4. ESTUDO DE CASO: DIMENSIONAMENTO ESTRURAL DAS CAMADAS DE PAVIMENTO DA RUA 04 DE OUTUBRO DO MUNICÍPIO DE MARRUPA-NIASSA

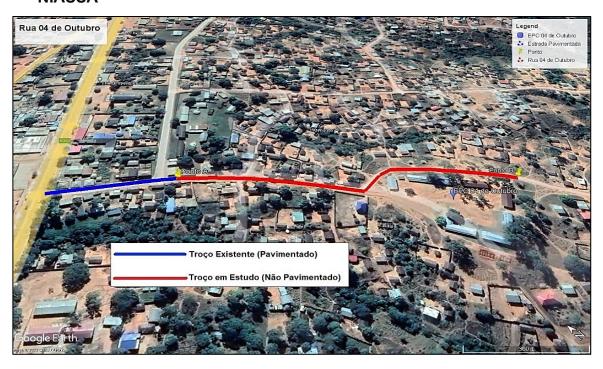


Figura 4.1: Ilustração do troço de intervenção (Fonte: Google Earth, 2023).

4.1. Breve caracterização do distrito

4.1.1. Localização, Superfície e População

A rua 04 de Outubro localiza-se no Municipio de Marrupa, Provincia de Niassa, com uma extensão de 360 m, sendo o troço de intervenção indicado na Figura 4.1.

O distrito de Marrupa está localizado no extremo Centro-Leste da Província do Niassa, confinando a Norte com os distritos de Mecula e Mavago, a Sul com os distritos de Maúa e Nipepe, a Este com o distrito de Balama da Província de Cabo Delgado e a Oeste com o distrito de Majune. A superfície do distrito é de 17.546 km² e a sua população está estimada em 90 657 habitantes. Com uma densidade populacional aproximada de 5.1 hab/km² (INE, 2023).

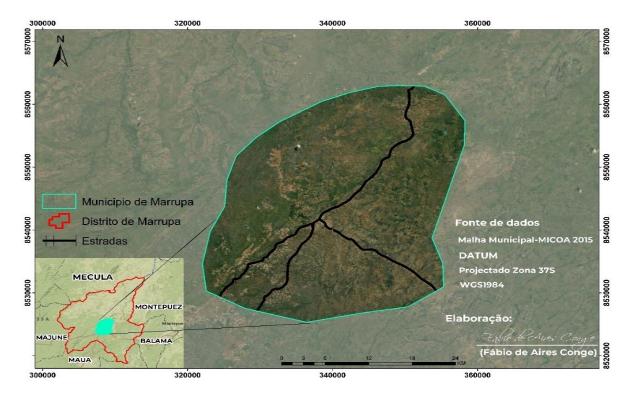


Figura 4.2: Mapa de localização do Município de Marrupa (Fonte: autor, 2023).

4.1.2. Clima

O distrito de Marrupa tem clima tropical húmido. O carácter tropical é garantido pela existência de duas estações anuais, sendo uma quente e húmida, entre os meses de Setembro a Março, e a outra fria e seca, entre os meses de Abril a Agosto (INE, 2023).

a) Temperatura

Conforme INE (2023), a temperatura média anual oscilou entre 23.1°C e 23.6°C nos últimos cinco anos e as temperaturas máximas médias variaram entre 30.9°C e 34.0°C durante esse período. E as temperaturas mínimas médias mantiveram-se entre 14.4°C e 15.4°C. As temperaturas máximas e mínimas absolutas mostram consistência, com os valores mais altos registados atingindo 34.0°C e os mais baixos permanecendo em 14.4°C, como ilustra a Tabela 4.1.

Esses dados indicam uma estabilidade nas condições térmicas da região ao longo dos últimos cinco anos. Vale ressaltar que a análise da temperatura é fundamental para compreender as variações climáticas e auxiliar em estratégias de adaptação local.

b) Precipitação

A precipitação anual dos últimos 5 anos varia de 1000 mm a 2223 mm, com um registo de 4590 mm, em 2019. O excesso de chuva tem causado enormes prejuízos à

agricultura, que predominantemente é de sequeiro. A humidade relativa média anual é de 70%. Conforme a Tabela 4.2 (INE, 2023).

Tabela 4.3: Temperaturas, precipitação e humidade registados na sede distrital. Distrito de Marrupa, 2017 – 2021.

Descrição	2017	2018	2019	2020	2021
Temperatura média (°C)	23.1	23.6	23.6	23.1	23.6
Temperatura máxima media (°C)	30.9	34	34	30.9	34
Temperatura mínima media (°C)	14.4	15.4	15.4	14.4	15.4
Temperatura máxima absoluta (°C)	30.9	34	34	30.9	34
Temperatura mínima absoluta (°C)	14.4	15.4	15.4	14.4	15.4
Precipitação (mm)	2222.6	1193.7	4589.4	2222.6	1193.7
Humidade relativa (%)	65.4	69.5	69.5	65.4	69.5

Fonte: INE, (2023).

4.1.3. Caracterização climática conforme a metodologia de Weinert

Para efeitos de dimensionamento, assume-se uma precipitação média anual de 2285 mm conforme a Tabela 4.1.

Assim, de conformidade com a Tabela 4.2, segundo o sistema numérico 'N' desenvolvido por Weinert, a região do projecto classifica-se como área N <2, ou seja, uma região tropical húmida e para o estudo, é assumida como sendo região húmida.

Tabela 4.4: Classificação climática.

Área climática N	Pluviosidade media Anual (mm)	Caracterização da área
N> 5+	<250	Árida
N=4-5	250-500	Semiárida
N=2-3	500-1000	Semiárida a subtropical
N <2	1000-1500	Tropical húmida

Fonte: Diogo, (2022).

4.2. Estudo do tráfego

4.2.1. Contextualização

O dimensionamento de pavimentos rodoviários é fortemente influenciado pelo tráfego, sendo esta, a principal acção a solicitar o pavimento através da consideração do período de dimensionamento, do tráfego acumulado, do factor de agressividade e da classe de tráfego.

4.2.2. Locais de contagem de tráfego

As contagens de tráfego foram realizadas estabelecendo a equipa de contagem em função da realidade local, tendo sido feita a contagem numa estrada adjacente a do estudo, pelo facto da via em estudo quase que não possuir tráfego ou tráfego mais reduzido.

4.2.3. Processo de contagem de tráfego

As contagens de tráfego visaram determinar a quantidade, o sentido e a composição do fluxo de veículos que passavam pelos pontos de contagem, numa determinada unidade de tempo.

As contagens foram feitas com o recurso ao método sugerido pela ANE, IP, directamente no local por observadores com o auxílio de folhas de contagem onde foram registados cada veículo que passava através de um traço, preenchendo a ficha para cada sentido durante 3 dias, quinta-feira, sexta-feira e sábado, nos dias 06, 07 e 08 de Outubro de 2022, respectivamente, com vista a ilustrar o tráfego médio diário dos dias úteis e o do final de semana.

Para o período da noite (das 18 às 6 horas da manhã), não foi efetuada nenhuma contagem, tendo em conta que pelo relatório de contagens é possível notar que apenas se regista tráfego em média no intervalo das 7-17h, o que se justifica também pelo facto de ser uma via que estabelece apenas acesso a uma escola primária e residências da região.

Dada a natureza das actividades e necessidades da comunidade, uma pequena alocação para o tráfego nocturno reflecte uma dedicação em considerar todas as possíveis situações e proporcionar uma solução de mobilidade que atenda ás demandas variadas dos usuários da via. Embora a proporção de tráfego nocturno seja mínima, essa alocação estratégica permite contemplar todas as necessidades da comunidade de maneira completa e abrangente. Desta forma, opta-se por adotar uma pequena percentagem de 10% do tráfego médio para o período nocturno.

4.2.4. Determinação da vida útil da estrada

A Tabela 3.1, na secção 3.2.1 estabelece o período de vida útil para as estradas de Baixo Volume de Tráfego, portanto definiu-se 20 anos como tempo de vida útil para a estrada objecto e estudo.

4.2.5. Estimativa do tráfego inicial por classe de veículo

Esta secção apresenta os resultados frutos das contagens feitas nos 3 dias estabelecidos nos dois sentidos. Pelo facto de o tráfego apresentar-se idêntico não foi feita a distinção das contagens na estimativa por classe.

A Tabela 4.3, apresenta o resumo das contagens nos dois sentidos e a composição média dos veículos para todas classes.

Tabela 4.5: Tráfego calculado para o período das 6-18 horas no Troço A-B e vice-versa

Se	Dia	s de co	ntagem	<u>:</u> Composição			ias d ntag	e co em	lia	Composição	Dad	dos totais
Classe	Dia 1	Dia 2	Dia 2	Média	%	Dia 1	Dia 2	Dia 2	Média	%	Média Geral	Composição %
А	11	5	58	2 5	26.52	1	5	1	6	6.39	30	16.7
В	0	1	2	1	1.08	0	1	1	1	0.75	2	0.92
С	0	0	3	1	1.08	0	0	2	1	0.75	2	0.92
D	0	0	0	-	0	0	0	0	ı	0	ı	0
Е	0	0	0	-	0	0	0	0	ı	0	ı	0
F	0	0	0	-	0	0	0	0	1	0	ı	0
G	0	0	0	-	0	0	0	0	1	0	ı	0
Н	0	0	0	-	0	0	0	0	ı	0	ı	0
I	53	88	58	6	71.33	7 0	88	87	82	92.11	148	81.47
Total	64	94	121	9	100	8	94	91	89	100	182	100

Fonte: autor, (2023).

4.2.6. Determinação da taxa de crescimento por ano

Ao realizar um projecto rodoviário, um dos principais aspectos a serem considerados é a estimativa da demanda da mesma. Isto porque é justamente a demanda, que nada mais é do que o volume de tráfego esperado, que determinará as proporções da infraestrutura da via a ser construído (DNIT, 2006).

Portanto, para o estudo em questão, teve-se em conta os dados estatísticos populacionais do INE, apresentados no Anexo 5. Fez-se a projecção conforme o gráfico 4.2, para avaliar a estimativa da taxa de crescimento da região, a partir da Eq.3.1, assumindo um crescimento aritmético.

Tabela 4.6: População por ano.

	. .	aşao po.	u					
Ano	2017	2018	2019	2020	2021	2022	2023	2024
Pop	82061	84872	87731	90657	93655	96733	99897	103155

Fonte: INE, (2023).

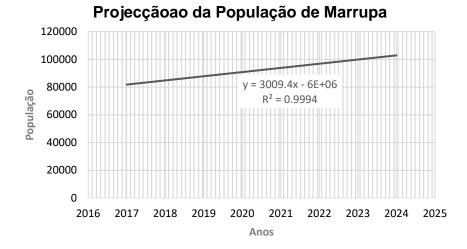


Gráfico 4.1: Estimativa do crescimento populacional por ano (Fonte: autor, 2023).

$$\alpha = \frac{P_f - P_0}{\left(t_f - t_0\right)P_0} = \frac{P_{2024} - P_{2017}}{\left(t_{2024} - t_{2017}\right)P_{2017}} = \frac{103155 - 82061}{(2024 - 2017)82061} \times 100\% = 3.76\%$$

Posto isto, com bases nos pressupostos apresentados, assume-se uma taxa de crescimento de tráfego de 3.76% para a via em estudo.

4.2.7. Tráfego médio diário anual (TMDA)

Para se ter em conta a cobertura de contagem durante 24 horas, tal como se esclareceu na secção 4.2.3, foi atribuído ao tráfego nocturno (das 18-5 h), uma percentagem estimada de 10% do tráfego diurno. Entretanto, a tabela abaixo ilustra o TMDA de 201 veículos, sendo 34 da classe A, 2 das classes B e C, 163 da classe I, com uma composição de 17%, 1% e 81%, respectivamente.

Tabela 4.7: Tráfego calculado para 24 horas.

		Classes									
			Se	entido	por	nto A	para	В			
Horas	Α	В	С	D	Ε	F	G	Н	I	Total	
06.00-18.00	25	1	1						66	93	
18.00-05.00	3	0	0	0	0	0	0	0	7	9	
24h	28	1	1	0	0	0	0	0	73	102	
Composição (%)	27	1	1	0	0	0	0	0	71	100	
	Sentido ponto B para A										
06.00-18.00	6	1	1						82	90	
18.00-05.00	1	0	0	0	0	0	0	0	8	9	
24h	7	1	1	0	0	0	0	0	90	99	
Composição (%)	7	1	1	0	0	0	0	0	91	100	
Tot. duas direções	34	2	2	0	0	0	0	0	163	201	
Composição (%)	17	1	1	0	0	0	0	0	81	100	

Fonte: autor, (2023).

4.2.8. Estimativa dos eixos padrão (ESAs) por categoria de veículos

As contagens e os resumos apresentados nas tabelas acima, foram realizadas tendo em conta todas as classes de veículos, todavia, de acordo com o manual do PDUL (MOPHRH, 2021), para a estimação do TMDA o mesmo, recomenda apenas que sejam consideradas as classes C, D, E, F e G, excluindo dessa forma as restantes classes.

Assim sendo, para estimativa dos ESAs por categoria, as classes A, B, H e I, foram excluídas dado que os respetivos fatores de equivalência de carga são iguais a 0, não tendo por isso o efeito na estimação do tráfego de veículos (ESAL).

4.2.9. Estimativa dos eixos padrão equivalentes acumulados

Tendo em conta a metodologia de estudo de tráfego apresentada na secção 3.2, após a estimativa dos eixos (ESAs) com os respectivos factores equivalência de carga, prossegue-se na estimativa do crescimento do tráfego por categoria de veículos, pela Eq.3.2.

E, posteriormente o acumulado de eixos padrão (ESAs) por categoria durante o período de vida do projecto e por sua vez estabelecer a classe de tráfego.

Em situações comuns, em que se não se tenha tráfego de projecto, pode-se recorrer ao uso do *software* HDM 4 para a gerar tráfego (HDM 4 é um software que serve como ferramenta primária para administrações rodoviárias na análise, planeamento, gestão e avaliação de manutenção, melhorias e decisões de investimento em estradas).

No entanto, dadas as necessidades e natureza da rodovia em estudo que envolve baixo volume de tráfego, acesso a escola e residências, uma análise aprofundada com o HDM-4 pode não ser justificada. Devido à natureza limitada do tráfego e do uso da via, priorizar medidas de segurança e manutenção práticas pode ser mais eficaz do que uma análise complexa. Isso permite optimizar recursos e atender às necessidades específicas da comunidade local. Razões como:

- Baixo Volume de Tráfego: Devido ao baixo volume de tráfego na rodovia, o impacto das variações sazonais ou diárias no tráfego tende a ser mínimo.
 Portanto, não é necessário um estudo complexo de geração de tráfego para avaliar as flutuações do volume de tráfego.
- Uso Principal para Acesso Local: A rodovia serve principalmente como um acesso local para a escola primária e residências nas proximidades. Ela não é

uma via de trânsito regional ou de longa distância, o que significa que a demanda de tráfego é intrinsecamente limitada.

- Características das Classes de Veículos: Dado que a rodovia não é
 frequentada por veículos de grande porte com factores de equivalência
 significativos, as classes de veículos registadas reflectem a realidade da via. Não
 há necessidade de ajustar as classes de veículos para cálculos de carga.
- Economia de Recursos: Realizar uma análise complexa de tráfego, como o HDM-4, pode ser dispendioso em termos de recursos financeiros e tempo. Em um cenário com baixo volume de tráfego e necessidades limitadas de projecto, a alocação de recursos para análises mais simples e medidas práticas pode ser mais económica
- Avaliação de Impacto Local: Dado que o foco principal da rodovia é o acesso local, a avaliação de impacto deve se concentrar em melhorar as condições da comunidade e da escola, bem como na manutenção da infra-estrutura existente.

Entretanto, centram-se, na economia de recursos e foco em medidas práticas, priorizando a segurança e as necessidades locais, o que reflecte uma abordagem eficaz para optimizar recursos e atender às necessidades específicas da comunidade. Portanto, considerando as características específicas da rodovia e a necessidade de optimização de recursos, a não realização de uma análise complexa de tráfego é justificável, desde que as medidas de segurança e a manutenção adequada sejam priorizadas para atender às necessidades locais.

Dessarte, visto que a via não registou circulação de veículos ou classes de projectos, opta-se por prosseguir com o estudo assumindo a menor classe de tráfego.

A decisão de continuar com a determinação do pavimento, assumindo o menor tráfego de veículos com os FE predominantes da via, é baseada em uma análise cuidadosa das características da via e do tráfego presente e uma expectativa do tráfego futuro.

Ao assumir o menor tráfego de acordo com os factores de equivalência predominantes, adopta-se igualmente, uma abordagem conservadora para a avaliação do pavimento, levando em consideração a realidade específica da via e do tráfego. Além disso, ao considerar o contexto de uma área predominantemente voltada para educação e tráfego leve, essa abordagem se alinha com as necessidades da comunidade local e com utilização mais realista da via.

Entretanto, a continuação dos cálculos do pavimento com base na atribuição da menor classe de tráfego não apenas está em conformidade com as normas, mas também reflecte de maneira precisa a dedicação em planificar de maneira responsável, as condições e características da via e do tráfego presentes e atender as necessidades dinâmicas da região. Essa abordagem se alinha com uma gestão eficaz da infra-estrutura viária, garantindo um equilíbrio entre as condições presentes e as expectativas futuras de tráfego.

4.2.10. Classe de tráfego

A partir da análise de tráfego realizada, é possível inferir que a Rua 04 de Outubro, localizada no Município de Marrupa, desempenha o papel de uma via de colecta para o tráfego leve, com uma presença limitada de veículos de grande porte. A maioria dos veículos que trafegam nessa via consiste em automóveis leves, sendo notável o número considerável de biciclos motorizados.

Conforme apresentado no manual do PDUL (MOPHRH, 2021), no contexto das estradas municipais, por se tratar de baixos volumes de tráfego, a classe mínima T1 poderá ser considerada ainda alta, levando ao dimensionamento de estruturas de pavimento antieconómicas para a nossa realidade. Por isso, é recomendável adoptar-se uma classificação mais ajustada, como por exemplo a usada pela UTG, conforme se pode observar na Tabela 3.6.

Como resultado, a via é categorizada como pertencente à classe de tráfego EO (Via de colecta para tráfego leve, com poucos veículos de grande porte) e pela UTG2 como sendo UC (conforme a Tabela do Anexo 6).

4.3. Resultados dos ensaios laboratoriais

Os ensaios laboratoriais foram conduzidos pelo laboratório da ANE, IP, em que o relatório dos materiais ensaiados consta no Anexo 13, foi possível classificar os materiais tendo como base as classificações da AASHTO apresentada na tabela seguinte:

Tabela 4.8: Resumo dos resultados dos ensaios dos materiais

Amostr a	No 10	No 40	No 200	LL (%)	IP (%)	AASHT O	Wopt (%)	γ (g/cm3)	CBR 2,5mm	CBR 5mm	CBR (SATC C Mínimo)
A 1	89.3	70.7	60.2	31.4	10	A-4(0)	14.5	1785	3	3	15
CE	54	32.4	24.5	27.5	9.4	A-2-4(0)	8.4	2055	4	3	15
А3	83.7	52.8	39.1	35.8	8	A-4(0)	12	1953	22	20	15
A2	89.3	70.7	60.2	28.6	10.1	A-4(0)	12.6	1871	10	10	15

Fonte: autor, (2023).

Sob ponto de vista de classificação regional (TRH14), os materiais têm características semelhantes a um solo G5 (pedregulho natural) de acordo com a tabela 13 apresentada no TRH14, e para o presente estudo, assume-se um CBR mínimo de 15%, sendo de classe do subleito S5 (SATCC) e classe SG1 de acordo TRH4, como ilustra a Tabela 4.7.

Tabela 4.9: Classificação da Fundação.

Take of the Charles in Cary		.o de l'alliage de la company										
Descrição	Designação da classe do subleito											
Intervalos do CBR	S1	S2	S3	S4	S5	S6						
do subleito (%)	2	3-4	5-7	8-14	15-29	30+						
Minimum depth *	250	250	350	450	550	650						

^{*}Profundidades que o engenheiro devia confirmar que a resistência nominal existe.

Fonte: SATCC, (1998).

Tabela 4.10: Classificação do subleito (CBR), para o dimensionamento estrutural de pavimento.

Class	Subgrade CBR (%)
SG1	> 15
SG2	7 to 15
SG3	3 to 7
SG4	< 3*

Fonte: DRAFT TRH4, (1996).

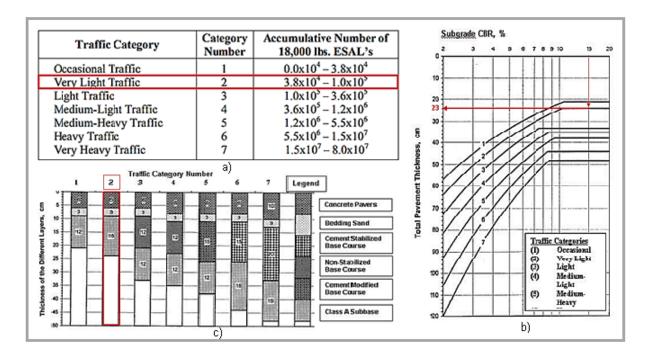
4.4. Determinação das espessuras das camadas do pavimento

4.4.1. Método Australiano

4.4.1.1. Pressupostos

- Classe de Subleito = S5 e CBR ≥15 %;
- Precipitação média de 2285mm (2017-2021), (INE-SPDI); N<2 -Zona húmida (Diogo, 2022);
- Tráfego = classe EO-UC, (0.05-0.2)10⁶ ESAs.

4.4.1.2. Estrutura do pavimento


Recorrendo à Figura 4.4, a espessura total resultou em 23 cm. E, quanto as camadas constitutivas do pavimento, elas podem ser obtidas do quadro de barras da Figura 4.4, onde se pode ver que a estrutura resultante é apresentada na tabela a seguinte, que se resume na seguinte:

- Um revestimento em blocos de betão cimento vulgo designado pavê (SA) de 80mm;
- Uma camada de colchão de areia de 30mm a 50 mm espessura (recomenda-se 25 mm no mínimo);
- Sub-base da classe A, com espessura mínima de 150 mm;
- Subleito CBR≥15%.

Tabela 4.11: Estrutura de pavimentos pelo Método Australiano.

Camadas	Espess	ura (mm)
Camadas	calculada	Adoptado
Pavê (SA)	50 mm	80 mm
Colchão de areia	30 mm	25 mm
Base de solo-cimento	-	100 mm
Sub-base granular	150 mm	150 mm
Subleito	∞	8
Espessura total	230	355

Fonte: autor, (2023).

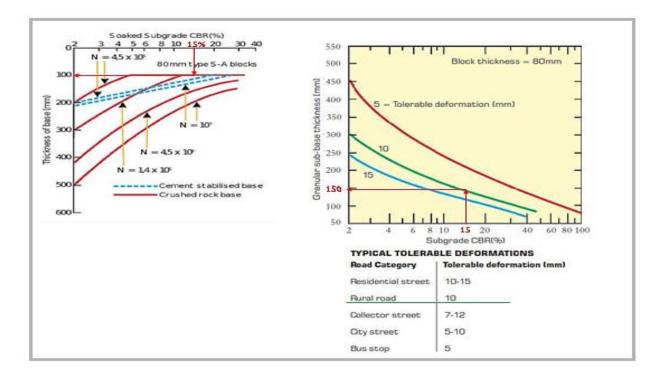
Figura 4.3: Determinação da espessura do pavimento pelas curvas de dimensionamento do Modelo de Israel (Fonte: Ishai, et. al., 2003).

4.4.2. Método Mecanístico Sul-Africano

4.4.2.1. Pressupostos

- Classe de Subleito = S5 e CBR ≥15 %;
- Precipitação média de 2285mm (2017-2021), (INE-SPDI); N<2 -Zona húmida (Diogo, 2022);
- Tráfego = classe EO-UC, (0.05-0.2)106 ESAs.

4.4.2.2. Estrutura do pavimento


A partir dos ábacos apresentados no capítulo III foi possível determinar as espessuras do pavimento. Pela figura 4.4, a espessura da base é de 100 mm e da sub-base de 150, pela interceptação entre o CBR de 15% as curvas correspondentes, conforme se ilustra. E a partir daí, tem-se:

- Um revestimento em blocos de betão designado pavê (SA) de 80mm;
- Uma camada de colchão de areia de 25mm de espessura (recomenda-se 25 mm no mínimo);
- Base em solo-cimento com espessura de 125mm;
- Sub-base granular com espessura de 150mm.

Tabela 4.12: Estruturas de pavimentos pelo método Mecanístico Sul-Africano.

Camada	Espessi	ura (mm)
Camada	Calculado	Adoptado
Pavê (SA)	80 mm	80 mm
Colchão de areia	25 mm	25 mm
Base de solo-cimento	125 mm	125 mm
Sub-base granular	150 mm	150 mm
Subleito	8	8
Espessura total	380	380

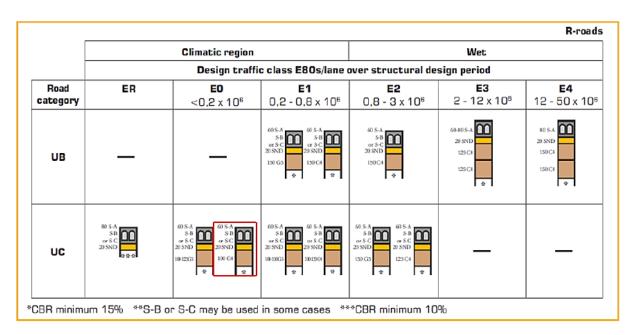
Fonte: autor, (2023).

Figura 4.4: Determinação da base e sub-base pelas curvas de dimensionamento mecanístico Sul-Africano (Fonte: MOPHRH, 2021).

4.4.3. Método Sul-Africano da UTG2

4.4.3.1. Pressupostos

- Classe de Subleito = S5 e CBR ≥15 %;
- Precipitação média de 2285mm (2017-2021), (INE-SPDI); N<2 -Zona húmida (Diogo, 2022);
- Tráfego = classe EO-UC, (0.05-0.2)10⁶ ESAs.


4.4.3.2. Estrutura do pavimento

- Revestimento em blocos de betão pavê de 80mm;
- Camada de colchão de areia de 25- 50mm de espessura (recomenda-se 25 mm no mínimo);
- Base em solo estabilizado com cimento designado por C4 com espessura mínima de 100mm;
- Foi assumida uma Sub-base granular G5 com espessura mínima de 100mm;
- Subleito CBR ≥ 15%.

Tabela 4.13: Estrutura de pavimento pelo método Sul Africano UTG2.

Camada	Espess	Espessura (mm)			
Camada	calculada	Adoptado			
Pavê (SA)	60 mm	80 mm			
Colchão de areia	20 mm	25 mm			
Base de solo-cimento	100 mm (C4)	100 mm (C4)			
Sub-base granular	-	100 mm (G5)			
Subleito	∞	8			
Espessura total	180	305			

Fonte: autor, (2023).

Figura 4.5: Dimensionamento pelo catálogo tipo de dimensionamento de pavimento de bloco de betão pelo método da UTG2 (Fonte: UTG2, 1987).

4.5. Comparação de resultados

A tabela seguinte resume os resultados finais obtidos pelos cálculos de dimensionamento camadas de pavimento pelos diferentes métodos considerados. A estrutura obtida pelo método Catálogo da UTG 2 C1, deu uma estrutura de 180 mm, no entanto foi incluída uma sub-base de 100 mm para melhorar ainda a capacidade de resistência deste pavimento ao tráfego de veículos esperado para o período de desenho. E o pavimento considerado, é o obtido pelo método catálogo da UTG2 C2 por ser o mais comum na região da SATCC e mais experimentado, ademais, por relevar factores como: clima, características do subleito, materiais e tráfego.

Tabela 4.14: Comparação de resultados de pavimentos por distintos métodos considerados.

		Métodos		
Camada	Australiano	Mecanístico Sul Africano	UTG2	
			C1	C2
Pavê (SA)	80 mm	80 mm	80 mm	80 mm
Colchão de areia	20 mm	20 mm	20 mm	30 mm
Base de solo-cimento	100 mm	125 mm	100 (C4) mm	100 mm (C4)
Sub-base granular	150 mm	150 mm	-	100 mm (G5)
Subleito	8	∞	8	8
Espessura total	355	380	180	310

Fonte: autor, (2023).

4.6. Descrição dos materiais das camadas de pavimento

A descrição é com base na Tabela 13 do TRH4, apresentada no Anexo 7

- Revestimento: Pavês de 80 mm do Tipo "UNI" de Betão Classe B25;
- Camada do colchão de areia: 30 mm de colchão de areia;
- Base: 100mm em solo estabilizado quimicamente com cimento tipo C4, UCS:
 0.75-1.5 Mpa @ 100% Mod. AASHTO; ITS Mínimo = 200 kPa @ 95-97% Mod.
 AASHTO; Dimensão Máxima das partículas de 63mm; IP Máximo de 5% após a estabilização; Percentagem máxima de perda de finos = 30%.
- Sub-base: 100mm em solo estabilizado mecanicamente tipo G5, CBR > 80%;
 Dimensão Máxima das partículas de 37,5mm; IP Máximo < 6 %; Percentagem máxima de perda de finos < 30%.
- Fundação: ripar e compactar para um mínimo G7.

4.6.1. Estrutura do Pavimento

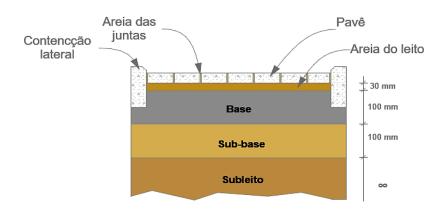


Figura 4.6: Estrutura do Pavimento considerado (C2) (Fonte: autor, 2023).

4.7. Análise estrutural do pavimento dimensionado (C1 e C2) com auxílio do programa *DesignPave* e *KenPave* no modelo linear elástico (MLE)

A Tabela 4.13 ilustra os parâmetros de sensibilidade dos materiais (módulos de elasticidade e coeficientes de *poisson*) considerados para as camadas de pavimento em estudo (C1 e C2).

De acordo com Morgado (2008), para o revestimento considera-se uma camada elástica equivalente isotrópica, com valores de 900-7500 Mpa, sendo o mais comum 3200 Mpa. Onde, para cada um dos modelos de estrutura foi considerada como sendo uma área carregada por rodas circular dupla. A carga por cada roda é de 20KN e a pressão de contacto dos pneus é de 520 KPa. (Diogo, 2022)

Tabela 4.15: Parâmetros de análise das camadas (C1 e C2).

Camadas de Pavimento	E (Mpa)	ט
Revestimento	3500	.30
Colchão de Areia	300	.35
Base	600	.35
Sub-base	150	.35
Subleito	150	.35

Fonte: Diogo, (2022)

4.7.1. Cenário 1

4.7.1.1. Análise de deslocamentos verticais

Pelo gráfico abaixo ilustra o resultado das deformações verticais ao longo da sua estrutura para diferentes profundidades de "z", decorrentes da aplicação de cargas do modelo considerado para análise, entretanto, é possível notar que os deslocamentos que ocorrem em diferentes pontos do eixo "YW" e tendem a reduzir com a profundidade.

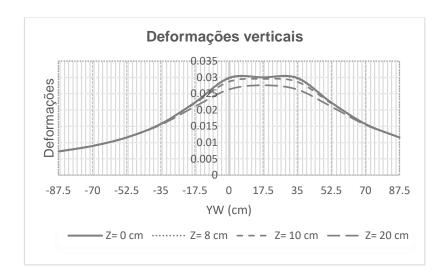


Gráfico 4.2: Deformações verticais C1 (Fonte: autor, 2023).

4.7.1.2. Análise de danos

Para análise de danos, tal como se referenciou na secção 3.3.4, os PBB sofrem menos danos por fadiga (Nf), sendo necessário tomar o devido cuidado na análise de danos por *rutting* (Nd). Sendo assim, procedeu-se à análise de danos com recuso à Eq.4.1., que resultou em 2,62 MESAs de repetições de carga. E importa referir que, a análise de danos por *rutting*, foi feita no topo da camada de subleito, ou seja, para Z=20cm.

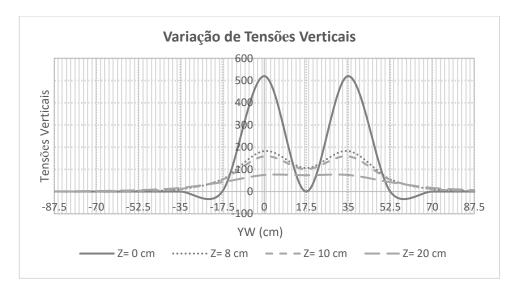

Tabela 4.16: Resumo da análise de danos (Nd) do pavimento C1

	Tabela 4.10. Resultio da alfalise de dallos (14a) de pavilliente e 1								
Ζ	f1	f2	f3	f4	f5	εt	23	Nf	Nd
-87,5			0,854	1,365E-09	4,477	-4,503E-05	3,45E-04		4,34E+06
-70			0,854	1,365E-09	4,477	-5,671E-05	3,70E-04		3,15E+06
-52,5			0,854	1,365E-09	4,477	-7,253E-05	3,86E-04		2,62E+06
-35			0,854	1,365E-09	4,477	-9,517E-05	3,79E-04		2,83E+06
-17,5			0,854	1,365E-09	4,477	-1,311E-04	3,21E-04		5,95E+06
0	0,0796	3,291	0,854	1,365E-09	4,477	-1,710E-04	2,27E-04	-	2,82E+07
17,5			0,854	1,365E-09	4,477	-1,720E-04	2,22E-04		3,09E+07
35			0,854	1,365E-09	4,477	-1,710E-04	2,27E-04		2,82E+07
52,5			0,854	1,365E-09	4,477	-1,311E-04	3,21E-04		5,95E+06
70			0,854	1,365E-09	4,477	-9,517E-05	3,79E-04		2,83E+06
87,5			0,854	1,365E-09	4,477	-7,253E-05	3,86E-04		2,62E+06
Menor						2,62			

Fonte: autor, (2023).

4.7.1.3. Análise de Tensões Verticais

Relativamente as tensões, é notável que as mesmas variam ao longo da sua profundidade.

Gráfico 4.3: Variações das tensões verticais (Fonte: autor, 2023).

4.7.2. Cenário 2

4.7.2.1. Análise de deslocamentos verticais

Similarmente ao cenário 1, os pontos de análise são os mesmos, diferindo apenas a profundidade (por este ter mais camadas). No entanto, pelo gráfico abaixo é possível constatar que os deslocamentos verticais também reduzem ao longo da sua estrutura para diferentes profundidades de "z" com uma média de 1,5E-02 cm.

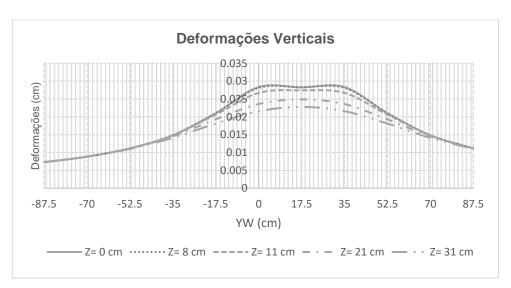


Gráfico 4.4: Deformações Localizadas do Pavimento C2 (Fonte: autor, 2023).

4.7.2.2. Análise de danos

A análise de danos (Nd), foi conduzida igualmente no topo da camada de subleito tendo resultado em 5,33MESAs.

Tabela 4.17: Resumo da análise de danos (Nd) do pavimento C2

YW	f1	f2	f3	f4	f5	εt	23	Nf	Nd
-87,5	0,0796	3,291	0,854	1,365E-09	4,477	-1,688E-06	3,75E-05		8,95E+10
-70	0,0796	3,291	0,854	1,365E-09	4,477	-4,139E-06	6,02E-05		1,07E+10
-52,5	0,0796	3,291	0,854	1,365E-09	4,477	-9,999E-06	9,93E-05		1,14E+09
-35	0,0796	3,291	0,854	1,365E-09	4,477	-2,445E-05	1,62E-04		1,28E+08
-17,5	0,0796	3,291	0,854	1,365E-09	4,477	-6,018E-05	2,44E-04		2,03E+07
0	0,0796	3,291	0,854	1,365E-09	4,477	-1,057E-04	3,10E-04	-	6,93E+06
17,5	0,0796	3,291	0,854	1,365E-09	4,477	-1,033E-04	3,29E-04		5,33E+06
35	0,0796	3,291	0,854	1,365E-09	4,477	-1,057E-04	3,10E-04		6,93E+06
52,5	0,0796	3,291	0,854	1,365E-09	4,477	-6,018E-05	2,44E-04		2,03E+07
70	0,0796	3,291	0,854	1,365E-09	4,477	-2,445E-05	1,62E-04		1,28E+08
87,5	0,0796	3,291	0,854	1,365E-09	4,477	-9,999E-06	9,93E-05		1,14E+09
	Menor						5,33		

Fonte: autor, (2023).

4.7.2.3. Análise de tensões

Similarmente, as tensões variam ao longo da sua profundidade.

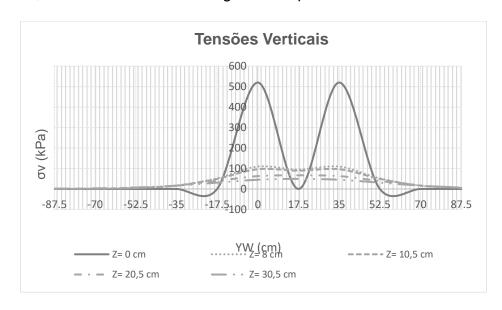


Gráfico 4.5: Variação das tensões C2 (Fonte: autor, 2023).

4.7.3. Comparação dos resultados dos pavimentos C1 vs C2

4.7.3.1. Análise dos deslocamentos na base do revestimento

A partir da tabela abaixo nota-se que para a mesma profundidade (z=8cm), o pavimento C2 mostra-se com menos deslocamentos em relação C1, visivelmente notável no gráfico 4.7.

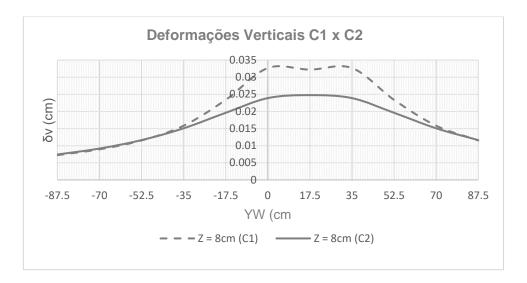


Gráfico 4.6: Deformações na base da camada do revestimento (Fonte: autor, 2023).

4.7.3.2. Análise dos deslocamentos no topo da camada de subleito

Similarmente, a análise acima, o pavimento C2 mostra-se com menos deslocamentos que o C1.



Gráfico 4.7: Deformações no topo da camada de subleito (Fonte: autor, 2023).

4.7.3.3. Análise das deformações permanentes

Tendo em conta os limites estabelecidos por Shackel (2002a), apresentados na secção 3.3.4, os pavimentos apresentam deformações abaixo do limite conforme a Tabela 4.18.

Tabela 4.18: Deformações permanentes

YW	Δpc1 (cm)	Δpc ₂ (cm)
-87,5	0,009450	0,000070
-70	0,008230	0,000240
-52,5	0,006910	0,000740
-35	0,006490	0,002050
-17,5	0,004600	0,004980
0	0,005440	0,008420
17,5	0,003450	0,008620
35	0,005440	0,008420
52,5	0,004600	0,004980
70	0,006490	0,002050
87,5	0,006910	0,000740
Maior	0,009450	<u>0,008620</u>

Fonte: autor, (2023)

4.8. Estimativa do tempo de vida útil

Tendo em conta a menor classe assumida para a via em estudo, com 0,2 MESAs, podese, de forma simplificada estimar-se o tempo de vida útil da rodovia, a Tabela 4.19, abaixo descreve a estimativa da vida útil da estrutura do pavimento.

Tabela 4.19: Tempo de vida útil do pavimento

Cenário	Tráfego/ ano	Capacidade	Tempo Previsto (Anos)
C1	200000	2600000,00	13
C2	200000	5330000,00	27

Fonte: autor, (2023).

5. CONCLUSÕES E RECOMENDAÇÕES

5.1. Conclusões

- No decorrer deste estudo, foram realizadas análises abrangentes para o dimensionamento e caracterização do pavimento da Rua 04 de Outubro, localizada no Município de Marrupa. A partir da análise de tráfego, classificou-se a via como pertencente à classe de tráfego EO (via de colecta para tráfego leve, com poucos veículos de grande porte) e, pela UTG2, como sendo UC.
- Os resultados dos ensaios laboratoriais dos materiais utilizados indicaram que estes apresentam características semelhantes a um solo G5, de acordo com a classificação regional (TRH14). Com base nessas características, foram aplicados diferentes métodos de dimensionamento de pavimento, incluindo o Método Australiano, o Método Mecanístico Sul-Africano e o Método Sul-Africano da UTG2. Além disso, a consideração das condições climáticas da região foi incorporada nos métodos de dimensionamento, garantindo uma abordagem holística.
- A escolha cuidadosa dos métodos de dimensionamento, especialmente a consideração de possíveis cenários de crescimento futuro, reflectem o comprometimento em garantir durabilidade a longo prazo. O pavimento C2, com uma estimativa de tempo de vida útil substancialmente maior, demonstra uma abordagem sustentável para atender às necessidades futuras da comunidade.
- A comparação dos três métodos de determinação estrutural das camadas de pavimento demonstra um rigor analítico. Essa análise comparativa ressalta a importância de escolher o método mais apropriado para as condições locais. A determinação estrutural das camadas de pavimento considerando os três métodos, foi relevante para averiguar a consistência de cada método e com a sua base foi mostrada a razoabilidade do método Sul-africano da UTG2 na aplicação em dimensionamento de pavimentos em Moçambique e assim garantindo uma selecção fundamentada da solução de dimensionamento mais apropriada.
- É importante fazer uma selecção criteriosa de materiais e métodos de dimensionamento para optimizar o desempenho de pavimentos em condições específicas. A sensibilidade em adicionar uma sub-base granular para melhorar e proporcionar o bom desempenho estrutural e funcional do pavimento. O pavimento C2, embora mais robusto, revelou-se economicamente vantajoso devido à sua durabilidade e resistência superior.

Contudo, com a realização deste trabalho foi possível, pela análise e aplicação de diferentes metodologias, dimensionar a estrutura de pavimento da Rua 04 de Outubro, propondo uma estrutura adequada para o seu bom funcionamento durante o período de vida útil.

5.2. Recomendações

- Expandir a pesquisa para outras regiões de Moçambique ou áreas com condições climáticas e de tráfego diferentes pode ajudar a avaliar a aplicabilidade dos métodos e soluções em contextos variados;
- Explorar tecnologias avançadas, como sensores integrados em pavimentos, para monitorar condições de tráfego, qualidade da superfície e impacto ambiental em tempo real;
- Compartilhar as descobertas e lições aprendidas com a comunidade académica e profissional para promover a disseminação de boas práticas em pavimentação e infra-estrutura rodoviária.

6. BIBLIOGRAFIA

6.1. Referências Bibliográficas

- Administração Nacional de Estradas (ANE). 2021- Serviços Centrais de Planificação: Departamento de Gestão e Redes de Estradas
- Balbo, José T. 2007- Pavimentação Asfáltica: Materiais, Projetos e Restauração. São Paulo, Oficina de Textos. 558p
- Balbo, José T. 2009- Pavimentos de Concreto. São Paulo, Oficina de Textos.
 472p
- Beaty, A.N.S. 1996- Laying course materials: Specification and performance. In Proceedings of the 5th International Conference on Concrete Block Paving, Tel Aviv, Israel, 23–27
- 5. Behiry, A.E.A.E.M. 2012- Fatigue and rutting lives in flexible pavement. Ain Shams Engineering Journal 3.
- Bernucci, Liedi B.; Motta, Laura M. G.; Ceratti, Jorge A. P.; Soares, Jorge B. Pavimentação Asfáltica. 2010 Formação Básica para Engenheiros. 3rd ed. Rio de Janeiro, Imprinta.
- 7. Branco, F; Pereira, P; Santos, L. P. 2011 -Pavimentos Rodoviários. Coimbra, Almedina. 2nd ed. 388p
- 8. Concrete Mansory Association of Australia. 2014- Concrete Segmental Pavements: Design Guide for Residential Accessways and Roads.
- Concrete Manufacturers Association. 2009- Concrete Block Paving: Book 3, Specification and Installation.
- 10. Cruz, Luiz M. 2003- Pavimento intertravado de concreto: estudo dos elementos e métodos de dimensionamento., 281 f. Dissertação (Mestrado) – Mestrado em Ciências em Engenharia Civil, Universidade Federal do Rio de Janeiro, Rio de Janeiro.
- 11. De Beer, M , Van der Merwe, CJ & Rohde, GT. 1997-Rehabilitation design of flexible pavements in South Africa. National Department of Transport, South Africa. 588p
- 12. Departamento Nacional de Infraestrutura de Transporte. 2006 DNIT. Manual de Pavimentação Rodoviária. Instituto de Pesquisas Rodoviárias, Rio de Janeiro.
- 13. Diogo, J. 2022-Projecto de Engenharia e Paisagismo da Rua 2009

- https://icpi.org/permeable-interlocking-concrete-pavement-drawings,
 Setembro de 2023
- Instituto Nacional de Estatística. 2023- Estatísticas do Distrito de Marrupa 2021.
 Maputo.
- 16. Ishai, I., Livneh, M., Craus, j., and Ruhm, C. 2003- Method and Guidelines for the Structural Design of Concret Block Pavements in Urban. Issued by the Israel Ministry of Housing and Construction.
- 17. Knapton, J. 1998- The north American Port Pavement Design Manual. In: Third International Workshop on Concrete Block Paving, Cartagena de Indias, Colombia, May 10-13.
- Ministério das Obras Públicas Recursos Hídricos e Habitação. 2021- Guião para Elaboração de Projectos de Estradas Urbanas Municipais. 1st ed. Maputo. 326p
- Morgado, P.R.S. 2008- Concepção e Dimensionamento de Pavimentos em Blocos. Dissertação de Mestrado. IST
- 20. Müller, M., R. 2005- Anvaliação de Transmissão de Esoforços em Pavimentos Intertravados de Blocos de Concreto. Dissertação de Mestrado. Rio de Janeiro
- 21. Odemark, N. 1949- Investigations as to the elastic properties of soils and design of pavements according to the theory of elasticity.
- 22. Reis, N., F., S. 2009- Análise estrutural de pavimentos rodoviários: aplicação a um pavimento reforçado com malha de aço. Dissertação. Universidade Técnica de Lisboa, 119 p.
- 23. Senço, Wlastermiler de. 2007 -Manual de Técnicas de Pavimentação. 2nd ed. São Paulo: Pini,. 761 p.
- 24. Shackel, B. 1986b- The design of heavy duty industrial concrete pavements. Proc. Int. Conf. Conc. in Transp., Vancouver (in press)
- 25. Shackel, B. 1990- Design and Construction of Interlocking Concrete Block Pavements. Elsevier, New York and London.
- 26. Shackel, B. 2002a- The development and application of Mechanistic design procedures for concrete Block Paving. Sixth International Conference on Concrete Block Paving, Tokyo.
- 27. Souza, M., L. 1980- Pavimentação Rodoviária. 2nd ed. Rio de Janeiro. 361p
- 28. Standards Authority for Touch in Cancer Care. 1998- Código de Boas Práticas

 Para o Dimensionamento de Pavimentos de Estradas.

- 29. Technical Recommendations for Highways (TRH14). 1985- Guidelines For Road Construction Materials. South Africa. 57p
- 30. Technical Recommendations for Highways (TRH4). 1996- Structural Design of Flexible Pavements For Interurban and Rural Roads. South Africa. 101p
- 31. Urban Transport Guidelines (UTG2). 1987- Structural Design of Segmental Block Pavements for Southern Africa. South Africa. 48p
- 32. Urban Transport Guidelines (UTG3). 1988- Structural Design of Urban Roads. South Africa. 74p
- 33. Yaginuma, H.; Yoshida, T.; Ikeda, T. 2000- Evaluation of Durability of Bedding Sand for Interlocking Block Pavement Under Repeated Loading by Heavy Vehicles. Doboku Gakkai Ronbunshu.
- 34. Yoder, E. J; Witczak, E. W. 1975-Principles of Pavement Design. USA.728p

6.2. Outra bibliografia consultada

- Gonçalvez, F. J. P. 1999- Apostila de Rodovias III. Universidade de Passo Fundo, Passo Fundo – RS.
- DNER. 1983-Projeto de pesquisas e operação da pista experimental circular.
 Departamento Nacional de Estradas de Rodagens, relatório técnico contrato PG999-A/82
- Hallack, A. 1998- Dimensionamento de Pavimentos com Revestimento de Peças Pré-Moldadas de Concreto para Áreas Portuárias e Industriais". Tese de M. Sc, USP – Escola Politécnica, São Paulo-SP.
- 4. Huang, Y. H. 1993- Pavement Analysis and Design. Prentice Hall, New Jersey.
- 5. Oda, S. 2003- Pavimentação: Notas de Aulas, Maringá

ANEXOS

Anexo 1- 1º dia de contagem

					RESUMO		ONTAGE	EM DE 1	TRAFE	GO DIA	RIO EM	MARR	UPA - N	IIASSA					
Direcção do tráfego	: Es	trada P	rincipa	l - Esco	la 4 de O	utubro													
Data: 06/10/2022																			
Dia da semana: Qu	inta-fei	ra (A-B	3)																
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11h	11h-12h	12h-13h	13h-14h	14h-15h	15h-16h	16h-17h	17h-18h	18h-19h	19h-10h	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/I
Motocicleta																			,
+ Triciclo, etc	0	0	0	0	0	9	7	11	5	9	12	0							53
Caro + taxis. etc		_	_	_	_	_	_			_	_	_							
	0	0	0	0	0	0	6	2	1	0	2	0							11
Mini Bus 2 eixos / pneu traze simples)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao pequeno (2 eixos, rodado simple)	0	0	0	0	0	0	0	0	0	0	0	0							0
BUS Medio 2 eixos / nneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio (2 Eixos, com pneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (por definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

				R	ESUMO	DE CO	ONTAGE	M DE T	RAFE	GO DIA	RIO EM	MARRU	JPA - N	IASSA					
Direcção do tráfe	ego:	Escola	4 de	Outubro	- Estrada	a Princip	al												
Data: 06/10/2022	_																		
Dia da semana: Quinta-	feira (l	3-A)																	
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11	11h-12h	12h-13h	13h-14h	14h-15h	15h-16h	16h-17h	17h-18h	18h-19h	19h-10	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/D
Motocicleta																			
+ Triciclo, etc	0	0	0	0	10	5	8	14	5	13	13	2							70
Caro + taxis , etc																			
•	0	0	0	0	2	1	1	3	1	1	2	0							11
	,								_		_								
Mini Bus (2 eixos / pneu traze simples)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao pequeno (2 eixos, rodado simple)	0	0	0	0	0	0	0	0	0	0	0	0							0
BUS Medio (2 eixos / nneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio (2 Eixos. com pneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (nor definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

Anexo 2- 2º dia de contagem

				RES	SUMO D	E CON	TAGEM	DE TRA	AFEGO	DI+A6:	T76ARI	O EM N	IARRUI	PA - NIA	ASSA				
Direcção do tráfego	o: Es	trada F	rincip	al - Esco	ola 4 de C	Outubro													
Data: 07/10/2022																			
Dia da semana: Se	xta-feii	ra (A-B)																
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11h	11h-12h	12h-13h	13h-14h	14h-15h	15h-16h	16h-17h	17h-18h	18h-19h	19h-10h	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/I
+ Triciclo. etc	0	9	12	8	11	8	11	9	6	5	9	0							88
Caro + taxis, etc	0	1	1	1	1	1	0	0	0	0	0	0							5
Mini Bus 2 eixos / pneu traze simples)	0	1	0	0	0	0	0	0	0	0	0	0							1
Camiao pequeno (2 eixos, rodado simple)	0	0	0	0	0	0	0	0	0	0	0	0							0
BUS Medio eixos / pneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio (2 Eixos, com pneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Fixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (por definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

				R	ESUMO	DE CO	ONTAGE	EM DE T	RAFE	GO DIA	RIO EM	MARRI	JPA - N	IASSA					
Direcção do tráfego: Es	strada	Princip	al - Es	scola 4 d	le Outubi	ro													
Data: 07/10/2022																			
Dia da semana: Sexta-	eira (E	8-A)																	
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11h	11h-12h	12h-13h	13h-14h	14h-15h	15h-16h	16h-17h	17h-18h	18h-19h	19h-10	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/D
Motocicleta								_	_										,
+ Triciclo, etc	0	9	12	8	11	8	11	9	6	5	9	0							88
Caro + taxis, etc																			
	0	1	1	1	1	0	1	0	0	0	0	0							5
Mini Bus																			
(2 eixos / pneu traze simples)	0	1	0	0	0	0	0	0	0	0	0	0							1
Camiao pequeno (2 eixos, rodado simple)																			
6	0	0	0	0	0	0	0	0	0	0	0	0							0
BUS Medio (2 eixos / pneu trazeiro duplo)																			
(2 cmos) pince traceiro dopro)	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio (2 Eixos, com pneu trazeiro duplo)																			
(2 Exos, complied trazeno dupio)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Eixos)																			
S ENOS	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (por definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

Anexo 3- 3º dia de contagem

					RESUMO	DE CO	ONTAGI	EM DE	TRAFE	GO DI	ARIO E	M MAR	RRUPA	- NIASS	SA SA				
Direcção do tráfego	o: Es	trada F	rincipa																
Data: 08/10/2022																			
Dia da semana: Sá	bado ((A-B)																	
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11h	11h-12h	12h-13h	13h-14h	14h-15l	15h-16h	16h-17h	17h-18h	18h-19h	19h-10h	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/D
Motocicleta + Triciclo. etc	0	10	7	5	10	10	10	2	4	0	0	0							58
Caro + taxis, etc	0	0	0	0	0	0	2	0	0	0	0	0							2
Mini Bus 2 eixos / pneu traze simples)	0	0	0	0	0	0	0	0	3	0	0	0							3
Camiao pequeno (2 eixos, rodado simple)	0	0	0	0	0	0	0	1	0	0	0	0							1
BUS Medio eixos / nneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio (2 Eixos, com pneu trazeiro	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (por definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

				R	ESUMO	DE CC	ONTAGE	M DE T	RAFE	30 DIAI	RIO EM	MARRI	JPA - N	IASSA					
Direcção do tráf	ego:	Escola	4 de	Outubro	- Estrad	a Princip	al												
Data: 08/10/2022																			
Dia da semana: Sábado	o (B-A)																	
	6h-7h	7h-8h	8h-9h	9h-10h	10 h-11k	11h-12h	12h-13h	13h-14h	14h-15h	15h-16h	16h-17h	17h-18h	18h-19h	19h-10	20h-21h	21h-22h	22h-23h	23h-24h	TOTAL/D
Motocicleta	0 7	7 G	0 0									2711 2011	2011 2011						
+ Triciclo, etc	0	9	12	5	12	9	7	10	11	4	8	0							87
Caro + taxis . etc																			
•	0	0	0	0	0	0	1	0	0	0	0	0							1
- 6 8 · · ·			,				_	•			,								_
Mini Bus (2 eixos / pneu traze simples)	0	0	0	0	0	0	1	0	0	0	0	0							1
Camiao pequeno (2 eixos, rodado simple)																			
	0	0	0	0	0	0	2	0	0	0	0	0							2
BUS Medio (2 eixos / nneu trazeiro duplo)																			
	0	0	0	0	0	0	0	0	0	0	0	0							0
Bus Grande	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Medio																			
(2 Eixos, com pneu trazeiro duplo)	0	0	0	0	0	0	0	0	0	0	0	0							0
Camiao Pesado (3 Fixos)																			
6 1	0	0	0	0	0	0	0	0	0	0	0	0							0
(4 ou mais eixos)	0	0	0	0	0	0	0	0	0	0	0	0							0
Outros (por definir)	0	0	0	0	0	0	0	0	0	0	0	0							0

Anexo 5- Dados Populacionais (INE)

								População	por sexo		_	_	_		_	
Idade	201	17	201	18	201	19	202	0	202	21	:	2022		2023		2024
	M	НМ	M	НМ	M	HM	M	НМ	M	НМ	M	НМ	M	HM	M	НМ
Total	42.507	82.061	43.904	84.872	45.327	87.731	46.784	90.657	48.278	93.655	49.810	96.733	51.386	99.897	53.007	103.155
0 - 4	8359	16339	8094	15947	7802	15505	7588	15228	7632	15468	8294	16918	8503	17342	8735	17815
5-9	7568	14986	8050	15888	8506	16743	8843	17365	8870	17376	8217	16063	7962	15682	7677	15246
10-14	5159	10393	5540	11169	5999	12048	6496	12972	7002	13903	7500	14825	7977	15717	8429	16564
15-19	4540	8409	4619	8703	4679	8983	4759	9303	4911	9734	5166	10319	5542	11085	5995	11953
20-24	3980	7004	4133	7292	4270	7586	4393	7885	4502	8188	4603	8495	4683	8785	4744	9062
25-29	3037	5678	3219	5939	3412	6200	3606	6461	3791	6727	3960	7001	4110	7283	4246	7571
30-34	2266	4341	2355	4510	2473	4730	2616	4986	2774	5253	2940	5514	3116	5768	3303	6022
35-39	2006	3807	2051	3881	2070	3923	2080	3958	2104	4018	2157	4124	2243	4288	2357	4501
40-44	1401	2840	1492	2979	1603	3142	1720	3311	1823	3461	1899	3577	1943	3651	1963	3694
45-49	1133	2260	1168	2336	1194	2402	1222	2468	1263	2550	1324	2653	1411	2786	1517	2942
50-54	822	1653	867	1733	916	1819	966	1908	1014	1995	1055	2076	1088	2147	1113	2210
55-59	588	1188	613	1239	643	1295	677	1356	713	1422	752	1490	795	1564	841	1645
60-64	472	912	478	929	486	951	497	978	511	1012	531	1053	555	1100	582	1151
65-69	386	749	398	767	408	779	415	787	421	796	427	807	433	822	441	842
70-74	271	527	284	548	300	574	317	602	333	629	347	651	358	667	367	677
75-79	222	415	222	418	223	421	226	425	231	433	240	445	251	463	265	485
+08	297	561	320	596	342	630	363	662	382	693	399	721	416	748	433	775

Anexo 6- Classificação rodovária UTG2

FIGURE 2
Definition of four divisions within Category R

		Road Category		
	UA	UB	UC	UD
General description	Primary and di	istributor roads	Local access re	ads
Road class	1 and 2	3 and 4	5(a) and 5(b)	5(b) to 5(f)
Detailed description and function	Trunk roads and primary distributors (SAICE: Freeway and major arterial), also by-passes and certain rural main- roads	District and local distributors (SAICE: Minor arterials and collectors), also industrial roads, CBD roads, goods loading areas and bus routes.	Residential access collectors, also car parks, no bus routes.	Local access roads: loops, access ways, access courts, access strips and culs-de-sac
Importance and service level	Very important High level of service	Important Moderate level of service	Less important Moderate to low level of service	Unimportant Low level of service
Total traffic over structural design period				St. Common Commo
(a) If road carries construction traffic	0,8 - 50x10 ⁶ E80s/lane*	0,05 - 3x10 ⁶ E80s/lane	< 0,2x10 ⁶ E80s/lane	< 0,2x106
(b) If road does not carry construction raffic	0,8 - 50x10 ⁶ E80s/lane*	0,05 - 3x10 ⁸ E80s/lane	< 0,5 x 10 ⁶ £80s/lane	< 0,8 - 50x10 ⁶

^{*} or equivalent area

Anexo 7- Materiais e símbolos TRH4 - Tabela 13

TABLE 13

Material symbols and abbreviated specifications used in the Catalogue designs

SYMBOL	CODE	MATERIAL	ABBREVIATED SPECIFICATIONS
7777 777	G1	Graded crushed stone	Dense - graded unweathered crushed stone; Maximum size 37,5 mm; 86 - 88 % apparent relative density; Soil fines PI < 4
7777	G2	Graded crushed stone	Dense - graded crushed stone; Maximum size 37,5 mm;100 - 102 % Mod. AASHTO or 85 % bulk relative density; Soil fines PI < 6
7777	G3	Graded crushed stone	Dense - graded stone and soil binder; Maximum size 37,5 mm; 98 - 100 % Mod. AASHTO ; Soil fines PI < 6
0,0	G4	Crushed or natural gravel	Minimum CBR = 80 % @ 98 % Mod. AASHTO; Maximum size 37,5 mm; 98 - 100 % Mod. AASHTO; PI < 6; Maximum Swell 0,2 % @ 100 % Mod. AASHTO. For calcrete PI ≤ 8
0,0	G5	Natural gravel	Minimum CBR = 45 % @ 95 % Mod. AASHTO; Maximum size 63 mm or 2/3 of layer thickness; Density as per prescribed layer usage; PI < 10 Maximum swell 0,5 % @ 100 % Mod. AASHTO *
000	G6	Natural gravel	Minimum CBR = 25 % @ 95 % Mod. AASHTO; Maximum size 63 mm or 2/3 of layer thickness; Density as per prescribed layer usage; Pi < 12 Maximum swell 1,0 % @ 100 % Mod. AASHTO *
000	G7	Gravet / Soil	Minimum CBR = 15 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
000	G8	Gravel / Soil	Minimum CBR = 10 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
000	G9	Gravel / Soil	Minimum CBR = 7 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; PI < 12 or 3GM** + 10; Maximum swell 1,5 % @ 100 % Mod. AASHTO ***
000	G10	Gravel / Soil	Minimum CBR = 3 % @ 93 % Mod. AASHTO; Maximum size 2/3 of layer thickness; Density as per prescribed layer usage; or 90% Mod. AASHTO

For calcrate PI ≤ 15 on condition that the Linear Shrinkage (LS) does not exceed 6 %.

GM = Grading Modulus (TRH14, 1985) =
$$\frac{300 - \{P_{2,10em} + P_{0,425em} + P_{0,075em}\}}{100}$$
 where ρ_{286} atc., denote the percentage passing through the sieve size.

For calcrefe PI ≤ 17 on condition that the Linear Shrinkage (LS) does not exceed 7 %.

TABLE 13 (Continued)

Material symbols and abbreviated specifications used in the Catalogue designs

SYMBOL	CODE	MATERIAL	ABBREVIATED SPECIFICATIONS
	C1	Cemented crushed stone or gravel	UCS****: 6,0 to 12,0 MPa at 100 % Mod. AASHTO; Specification at least G2 before treatment; Dense - graded ; Maximum aggregate 37,5 mm
	C2	Cemented crushed stone or gravel	UCS: 3,5 to 6,0 MPa at 100 % Mod. AASHTO; Minimum ITS **** = 400 kPa at 95 - 97 % Mod. AASHTO compaction; Specification at least G2 or G4 before trealment; Dense - graded; Max. aggregate 37,5 mm; Max. fines loss = 5 % *********************************
	C3	Cemented natural gravel	UCS: 1,5 to 3,5 MPa at 100 % Mod. AASHTO; Minimum ITS**** = 250 kPa at 95 - 97 % Mod. AASHTO compaction; Maximum aggregate 63 mm; 5 % Maximum PI = 6 after stabilization; Max. lines loss = 20 %
	C4	Cemented natural gravel	UCS: 0,75 to 1,5 MPa at 100 % Mod. AASHTO; Minimum ITS***** = 200 kPa at 95 - 97 % Mod. AASHTO compaction; Maximum aggregate 63 mm; 5 % Maximum PI = 6 after stabilization; Max. fines loss = 30 %
		Bitumen emulsion Modified gravel	Residual bitumen: 0,6 - 1,5 % (SABITA, manual 14, 1993); Minimum. CBR = 45 and Minimum UCS = 500 kPa @ 95 % Mod. AASHTO. Compection: 100 - 102 % Mod. AASHTO
	BES	Bitumen emulsion Stabilized gravel	Residual bitumen 1,5 - 5,0 % (SABITA, manual 14, 1993); Minimum ITS**** = 100 kPa; Minimum resilient modulus 1000 kPa. Compaction: 100 - 102% Mod. AASHTO
	BC1 BC2 BC3 BS	Hot - mix asphalt Hot - mix asphalt Hot - mix asphalt Hot - mix asphalt	LAMBS; Max. size 53 mm (SABITA, manual 13, 1993) Continuously graded; Max. size 37,5 mm Continuously graded; Max. size 26,5 mm Semi - gap graded; Max. size 37,5 mm
	AG AC AS AO AP	Asphalt surfacing Asphalt surfacing Asphalt surfacing Asphalt surfacing Asphalt surfacing	Gap graded (TRH 8, 1967) Continuously graded (TRH 8, 1987) Semi - gap graded (TRH 8, 1987) Open graded (TRH 8, 1987) Porous (Drainage) asphalt (SABITA, manual 17, 1994)
	S1 52 53 54 55 55 56 57 58 59	Surface treatment Surface treatment Sand seal Cape seal Sturry Sturry Sturry Surface renewal Surface renewal	Single seal (TRH 3, 1996) Multiple seal (TRH 3, 1996) See TRH 3, 1996 See TRH 3, 1996 Fine grading Medium grading Coarse grading Rejuverator Diluted emulsion
****	WM1 WM2 PM DR	Waterbound macadam Waterbound macadam Penetration macadam Dumprock	Max. size 75 mm; Max.Pl of lines = 6; 88 - 90 % apparent relative density Max. size 75 mm; Max.Pl of lines = 6; 86 - 88 % apparent relative density Coarse stone + keystone + bitumen Upgraded waste rock, maximum size 2/3 layer thickness

**** UCS: Unconfined Compressive Strength (TMH 1, 1979, Method A14)

(TS: Indirect Tensile Strength (SABITA Maqual 14, 1993)

Durability (TMH 1, 1979, Method A19)

Anexo 8- Tipos de Pavês

Nome dos			Dim	ensões	(mm)		Massa	Unidades
Blocos	Figura	L	L ₁	L ₂	В	0	volümica (kg/m²)	por m²
Hexagonals		-	195	97	170	55	120	38
"UNI- COLOC"		11 2, 5	,	-	225	100	225	26
"Uni"		22	•	-	112,	60	135	39
J.		5	_	_	5	80	175	- 55
			-	-		100	225	
Rectan- gulares		10 0	-	-	200	55	130	50
	_		-	-		80	175	
"Delta"	B 2.7	1	200	100	200	60	135	38
"Uni-Decor"	B L ₁	-	140	90	230	60	130	36
Perfil "I"		20 0	-		165	60	135	35
			-	-	1	80	175	

Anexo 9- Dimensionamento DesignPave C1

Calculated parameters:

Eq.1			Vertical strain; Eq.5	N; Eq.6-7
0.531	76.09	2.483	0.000496	10179313

Pavement design details

ESA	Tire pressure, (KPa)	Subgrade CBR
200000	700	15

Pavement layers	Layer thickness (mm)	Material modulus (MPa)	Material Poisson ratio
Paving layer	80	3500	0.30
Bedding sand layer	20	300	0.35
Base course layer	100	600	0.35
Subgrade layer		150	0.35

Anexo 10- Dimensionamento DesignPave C2

parameters:

Thickness Eq.1	, ,,	Vertical stress (KPa); Eq.2	Radial stress (KPa); Eq.3	Vertical strain; Eq.5	N; Eq.6-7
0.534		75.38	2.473	0.000491	10574905

Pavement design details

ESA	Tire pressure, (KPa)	Subgrade CBR
200000	700	15

Pavement layers	Layer thickness (mm)	Material modulus (MPa)	Material Poisson ratio
Paving layer	80	3500	0.30
Bedding sand layer	20	200	0.35
Base course layer	100	600	0.35
Sub-base course layer	100	150	0.35
Subgrade layer		150	0.35

Anexo 11- Relatório KenPave C1

```
INPUT FILE NAME   -C:\KENPAVE\UNTITLED REV00.DAT
NUMBER OF PROBLEMS TO BE SOLVED = 1
TITLE -C1
MATL = 1 FOR LINEAR ELASTIC LAYERED SYSTEM
NDAMA = 0, SO DAMAGE ANALYSIS WILL NOT BE PERFORMED
NUMBER OF PERIODS PER YEAR (NPY) = 1
NUMBER OF LOAD GROUPS (NLG) = 1
TOLERANCE FOR INTEGRATION (DEL) -- = 0.001
NUMBER OF LAYERS (NL) ---- = 4
NUMBER OF Z COORDINATES (NZ) ---- = 4
LIMIT OF INTEGRATION CYCLES (ICL) - = 80
COMPUTING CODE (NSTD) ---- = 9
SYSTEM OF UNITS (NUNIT) ----= 1
Length and displacement in cm, stress and modulus in kPa
unit weight in kN/m^3, and temperature in C
THICKNESSES OF LAYERS (TH) ARE: 8 2 10
POISSON'S RATIOS OF LAYERS (PR) ARE: 0.3 0.35 0.35 0.35
VERTICAL COORDINATES OF POINTS (ZC) ARE: 0 8 10 20
ALL INTERFACES ARE FULLY BONDED
FOR PERIOD NO. 1 LAYER NO. AND MODULUS ARE: 1 3.500E+06 2 3.000E+05
   3 6.000E+05 4 1.500E+05
LOAD GROUP NO. 1 HAS 2 CONTACT AREAS
CONTACT RADIUS (CR) ---- = 11
CONTACT PRESSURE (CP) ---- = 520
NO. OF POINTS AT WHICH RESULTS ARE DESIRED (NPT) -- = 11
WHEEL SPACING ALONG X-AXIS (XW)-----= 0
WHEEL SPACING ALONG Y-AXIS (YW)-----= 35
RESPONSE PT. NO. AND (XPT, YPT) ARE: 1 0.000 -87.500 2 0.000 -70.000
  3 \quad 0.000 \quad -52.500 \quad 4 \quad 0.000 \quad -35.000 \quad 5 \quad 0.000 \quad -17.500 \quad 6 \quad 0.000
 7 0.000 17.500 8 0.000 35.000 9 0.000 52.500 10 0.000 70.000
 11 0.000 87.500
PERIOD NO. 1 LOAD GROUP NO. 1
 POINT VERTICAL VERTICAL MAJOR MINOR INTERMEDIATE
```

				PRINCIPAL	PRINCIAL	P. STRESS
NO.	COORDINATE	DISP.	STRESS	STRESS	STRESS	(HORIZONTAL
			(STRAIN)	(STRAIN)	(STRAIN)	P. STRAIN)
1	0.00000	0.00721	0.000	15.169	-32.209	-0.725
	(STRAIN)		1.253E-06	7.157E-06	-1.044E-05	-1.044E-05
1	8.00000	0.00724	0.107	15.336	0.073	8.579
	(STRAIN)		-2.016E-06	3.640E-06	-2.029E-06	1.130E-06
1	10.00000	0.00725	0.189	2.460	-0.105	0.722
	(STRAIN)		-2.742E-06	7.480E-06	-4.062E-06	-3.403E-07
1	20.00000	0.00729	0.642	12.870	-0.090	0.260
	(STRAIN)		-6.162E-06	2.135E-05	-7.808E-06	-7.808E-06
2	0.00000	0.00892	0.000	27.537	-48.254	-0.738
	(STRAIN)		1.565E-06	1.207E-05	-1.608E-05	-1.608E-05
2	8.00000	0.00893	0.503	28.718	0.308	9.156
	(STRAIN)		-3.086E-06	7.394E-06	-3.158E-06	1.280E-07
2	10.00000	0.00893	0.758	5.105	-0.691	0.857
	(STRAIN)		-2.737E-06	1.682E-05	-9.258E-06	-2.294E-06
2	20.00000	0.00899	1.913	20.155	-1.870	1.051
	(STRAIN)		-6.976E-06	3.407E-05	-1.549E-05	-1.549E-05
3	0.00000	0.01154	0.000	57.091	-67.801	1.736
	(STRAIN)		1.414E-06	2.197E-05	-2.441E-05	-2.441E-05
3	8.00000	0.01154	1.781	57.078	0.743	6.005
	(STRAIN)		-4.809E-06	1.573E-05	-5.195E-06	-3.240E-06
3	10.00000	0.01155	2.515	12.447	-3.699	0.954
	(STRAIN)		-1.224E-09	4.469E-05	-2.796E-05	-7.025E-06
3	20.00000	0.01157	5.429	30.476	-7.419	3.080
	(STRAIN)		-3.032E-06	5.332E-05	-3.194E-05	-3.194E-05
4	0.00000	0.01573	0.000	113.865	-120.183	-7. 575
	(STRAIN)		-1.623E-06	4.348E-05	-4.345E-05	-4.345E-05
4	8.00000	0.01584	6.728	122.275	-17.573	1.706
	(STRAIN)		-6.622E-06	3.630E-05	-1.565E-05	-1.565E-05
4	10.00000	0.01582	8.592	34.578	-14.877	1.079
	(STRAIN)		1.442E-05	1.314E-04	-9.119E-05	-1.939E-05
4	20.00000	0.01567	15.514	41.198	-24.912	6.379
	(STRAIN)		2.168E-05	7.947E-05	-6.927E-05	-6.927E-05
5	0.00000	0.02394	0.000	497.270	119.689	260.658
	(STRAIN)		-3.077E-05	1.095E-04	-3.077E-05	2.159E-05

5	8.00000	0.02339	55.323	194.584	-197.975	20.524
	(STRAIN)		1.908E-05	7.081E-05	-7.500E-05	-7.500E-05
5	10.00000	0.02314	54.802	115.820	-30.283	12.010
	(STRAIN)		1.328E-04	4.074E-04	-2.501E-04	-5.976E-05
5	20.00000	0.02209	46.379	56.496	-79.656	-24.101
	(STRAIN)		1.319E-04	1.547E-04	-1.517E-04	-1.517E-04
6	0.00000	0.03348	520.000	1487.263	722.923	1307.839
	(STRAIN)		-3.303E-05	2.509E-04	-3.303E-05	1.842E-04
6	8.00000	0.03268	248.233	248.776	-754.277	-637.273
	(STRAIN)		1.902E-04	1.904E-04	-1.822E-04	-1.822E-04
6	10.00000	0.03143	213.323	216.748	62.195	66.591
	(STRAIN)		5.568E-04	5.722E-04	-1.232E-04	-1.232E-04
6	20.00000	0.02845	89.632	90.369	-154.585	-114.008
	(STRAIN)		3.056E-04	3.073E-04	-2.439E-04	-2.439E-04
7	0.00000	0.03329	0.000	900.491	234.907	611.084
	(STRAIN)		-6.245E-05	1.848E-04	-6.245E-05	7.728E-05
7	8.00000	0.03223	107.327	230.714	-398.137	107.328
	(STRAIN)		4.502E-05	9.084E-05	-1.427E-04	-1.427E-04
7	10.00000	0.03172	104.970	104.970	22.959	52.176
	(STRAIN)		2.622E-04	2.622E-04	-1.068E-04	-1.068E-04
7	20.00000	0.02965	83.085	83.085	-145.227	-66.479
	(STRAIN)		2.620E-04	2.620E-04	-2.517E-04	-2.517E-04
8	0.00000	0.03348	520.000	1487.263	722.923	1307.839
	(STRAIN)		-3.303E-05	2.509E-04	-3.303E-05	1.842E-04
8	8.00000	0.03268	248.233	248.776	-754.277	-637.273
	(STRAIN)		1.902E-04	1.904E-04	-1.822E-04	-1.822E-04
8	10.00000	0.03143	213.323	216.748	62.195	66.591
	(STRAIN)		5.568E-04	5.722E-04	-1.232E-04	-1.232E-04
8	20.00000	0.02845	89.632	90.369	-154.585	-114.008
	(STRAIN)		3.056E-04	3.073E-04	-2.439E-04	-2.439E-04
9	0.00000	0.02394	0.000	497.270	119.689	260.658
	(STRAIN)		-3.077E-05	1.095E-04	-3.077E-05	2.159E-05
9	8.00000	0.02339	55.323	194.584	-197.975	20.524
	(STRAIN)		1.908E-05	7.081E-05	-7.500E-05	-7.500E-05
9	10.00000	0.02314	54.802	115.820	-30.283	12.010
	(STRAIN)		1.328E-04	4.074E-04	-2.501E-04	-5.976E-05
9	20.00000	0.02209	46.379	56.496	-79.656	-24.101
						77

	(STRAIN)		1.319E-04	1.547E-04	-1.517E-04	-1.517E-04
10	0.00000	0.01573	0.000	113.865	-120.183	-7.575
	(STRAIN)		-1.623E-06	4.348E-05	-4.345E-05	-4.345E-05
10	8.00000	0.01584	6.728	122.275	-17.573	1.706
	(STRAIN)		-6.622E-06	3.630E-05	-1.565E-05	-1.565E-05
10	10.00000	0.01582	8.592	34.578	-14.877	1.079
	(STRAIN)		1.442E-05	1.314E-04	-9.119E-05	-1.939E-05
10	20.00000	0.01567	15.514	41.198	-24.912	6.379
	(STRAIN)		2.168E-05	7.947E-05	-6.927E-05	-6.927E-05
11	0.00000	0.01154	0.000	57.091	-67.801	1.736
	(STRAIN)		1.414E-06	2.197E-05	-2.441E-05	-2.441E-05
11	8.00000	0.01154	1.781	57.078	0.743	6.005
	(STRAIN)		-4.809E-06	1.573E-05	-5.195E-06	-3.240E-06
11	10.00000	0.01155	2.515	12.447	-3.699	0.954
	(STRAIN)		-1.224E-09	4.469E-05	-2.796E-05	-7.025E-06
11	20.00000	0.01157	5.429	30.476	-7.419	3.080
	(STRAIN)		-3.032E-06	5.332E-05	-3.194E-05	-3.194E-05

Anexo 12- Relatório KenPave C2 INPUT FILE NAME -C:\KENPAVE\LAY1.DAT NUMBER OF PROBLEMS TO BE SOLVED = 1 TITLE -cenario 02 MATL = 1 FOR LINEAR ELASTIC LAYERED SYSTEM NDAMA = 0, SO DAMAGE ANALYSIS WILL NOT BE PERFORMED NUMBER OF PERIODS PER YEAR (NPY) = 1 NUMBER OF LOAD GROUPS (NLG) = 1TOLERANCE FOR INTEGRATION (DEL) -- = 0.001NUMBER OF LAYERS (NL) ----- = 5 NUMBER OF Z COORDINATES (NZ) ---- = 5 LIMIT OF INTEGRATION CYCLES (ICL) - = 80 COMPUTING CODE (NSTD) ---- = SYSTEM OF UNITS (NUNIT) ----= 1 Length and displacement in cm, stress and modulus in kPa unit weight in kN/m^3 , and temperature in C THICKNESSES OF LAYERS (TH) ARE: 6 8 0 0 POISSON'S RATIOS OF LAYERS (PR) ARE: 0.30 0.35 0.35 0.35 0.35 VERTICAL COORDINATES OF POINTS (ZC) ARE: 0 8 10.5 20.5 30.5 ALL INTERFACES ARE FULLY BONDED FOR PERIOD NO. 1 LAYER NO. AND MODULUS ARE: 1 2.750E+07 3.000E+05 3 6.000E+05 4 1.500E+05 5 1.500E+05 LOAD GROUP NO. 1 HAS 2 CONTACT AREAS CONTACT RADIUS (CR) ---- = 11 CONTACT PRESSURE (CP) ---- = 520 NO. OF POINTS AT WHICH RESULTS ARE DESIRED (NPT)-- = 11 WHEEL SPACING ALONG X-AXIS (XW)-----= WHEEL SPACING ALONG Y-AXIS (YW)-----= RESPONSE PT. NO. AND (XPT, YPT) ARE: 1 0.000 -87.500 2 0.000 -70.000 $3 \quad 0.000 \quad -52.500 \quad 4 \quad 0.000 \quad -35.000 \quad 5 \quad 0.000 \quad -17.500 \quad 6 \quad 0.000 \quad 0.000$ 0.000 17.500 8 0.000 35.000 9 0.000 52.500 10 0.000 70.000 0.000 87.500 11 PERIOD NO. 1 LOAD GROUP NO. 1 VERTICALVERTICALVERTICALMAJORMINORINTERMEDIATEPRINCIPALPRINCIALP. STRESSCOORDINATEDISP.STRESSSTRESSSTRESS(HORIZONTAL) MINOR INTERMEDIATE POINT STRESS STRESS STRESS (HORIZONTAL (STRAIN) (STRAIN) (STRAIN) P. STRAIN) 0.000 47.516 -115.837 -0.312 NO. COORDINATE DISP. STRESS (HORIZONTAL 0.00000 0.00652 0.000 47.516 -113.637 (STRAIN) 9.824E-07 3.417E-06 -4.899E-06 -4.899E-06 0.000 47.516 -113.637 0.000 47.516 -113.637

1

1

1

(STRAIN)

7	\sim
- /	ч
•	v

-0.993

-2.751E-06 1.766E-05 -1.376E-05 -1.688E-06

10.50000 0.00654 0.098 5.102 -2.310 0.170 (STRAIN) -3.012E-06 1.950E-05 -1.385E-05 -2.691E-06

20.50000 0.00653 0.704 5.188 -2.607 -0.786 (STRAIN) 4.692E-06 3.459E-05 -1.738E-05 -5.242E-06

30.50000 0.00646 1.290 5.620 -2.380

	(C III 7 T T I I)		0 (02# 06	2 747E 0E	1 6075 06	C C22E 0C
0	(STRAIN)	0 00000	8.603E-06	3.747E-05	-1.587E-05	-6.623E-06
2	0.00000	0.00808	0.000	108.565	-142.945	7.237
•	(STRAIN)		7.632E-07	5.922E-06	-6.882E-06	-6.882E-06
2	8.00000	0.00805	0.768	8.087	-3.433	0.387
	(STRAIN)		-2.424E-06	3.051E-05	-2.133E-05	-4.139E-06
2	10.50000	0.00805	1.036	9.068	-3.162	0.284
	(STRAIN)		-2.559E-06	3.359E-05	-2.145E-05	-5.944E-06
2	20.50000	0.00798	2.132	8.782	-3.805	-1.496
	(STRAIN)		1.421E-05	5.855E-05	-2.537E-05	-9.975E-06
2	30.50000	0.00781	3.040	9.029	-3.371	-1.728
	(STRAIN)		2.027E-05	6.019E-05	-2.247E-05	-1.152E-05
3	0.0000	0.01049	0.000	201.230	-247.188	17.025
	(STRAIN)		1.288E-06	1.067E-05	-1.216E-05	-1.216E-05
3	8.00000	0.01047	4.219	16.130	-4.282	1.147
	(STRAIN)		3.824E-06	5.742E-05	-3.443E-05	-9.999E-06
3	10.50000	0.01046	4.680	17.449	-3.926	0.714
	(STRAIN)		4.451E-06	6.191E-05	-3.428E-05	-1.340E-05
3	20.50000	0.01019	6.282	15.657	-5.574	-2.927
	(STRAIN)		4.188E-05	1.044E-04	-3.716E-05	-1.951E-05
3	30.50000	0.00973	7.226	14.892	-4.755	-3.042
	(STRAIN)		4.817E-05	9.928E-05	-3.170E-05	-2.028E-05
4	0.00000	0.01446	0.000	480.008	-399.765	-5.675
	(STRAIN)		-1.374E-06	2.335E-05	-2.144E-05	-2.144E-05
4	8.00000	0.01441	16.009	34.173	-3.650	3.349
	(STRAIN)		3.252E-05	1.143E-04	-5.594E-05	-2.445E-05
4	10.50000	0.01433	16.426	34.885	-3.597	1.732
	(STRAIN)		3.539E-05	1.185E-04	-5.471E-05	-3.073E-05
4	20.50000	0.01346	16.934	28.285	-8.010	-5.724
	(STRAIN)		1.129E-04	1.886E-04	-5.340E-05	-3.816E-05
4	30.50000	0.01236	16.100	24.272	-6.510	-5.241
	(STRAIN)		1.073E-04	1.618E-04	-4.340E-05	-3.494E-05
5	0.0000	0.02088	0.000	1965.846	134.979	1177.102
	(STRAIN)		-4.081E-05	5.240E-05	-4.081E-05	1.225E-05
5	8.00000	0.02043	51.625	72.687	2.164	8.144
	(STRAIN)		1.355E-04	2.303E-04	-8.709E-05	-6.018E-05
5	10.50000	0.02008	49.292	68.513	-0.425	3.109
	(STRAIN)		1.387E-04	2.252E-04	-8.498E-05	-6.907E-05
5	20.50000	0.01776	39.036	48.067	-10.865	-10.437
	(STRAIN)		2.602E-04	3.204E-04	-7.243E-05	-6.958E-05
5	30.50000	0.01545	30.859	36.611	-8.301	-8.239
	(STRAIN)		2.057E-04	2.441E-04	-5.534E-05	-5.534E-05
6	0.00000	0.02702	520.000	4257.033	513.489	3585.326
	(STRAIN)		-9.540E-05	9.518E-05	-9.540E-05	6.099E-05
6	8.00000	0.02644	109.442	111.912	14.677	20.635
	(STRAIN)		3.207E-04	3.318E-04	-1.057E-04	-1.057E-04
6	10.50000	0.02567	96.531	99.156	4.607	11.582
	(STRAIN)		2.998E-04	3.116E-04	-1.138E-04	-1.138E-04
6	20.50000	0.02156	62.803	64.828	-15.050	-11.177
	(STRAIN)		4.187E-04	4.322E-04	-1.003E-04	-1.003E-04
6	30.50000	0.01802	44.997	46.567	-11.039	-8.700
	(STRAIN)		3.000E-04	3.104E-04	-7.360E-05	-7.360E-05
7	0.00000	0.02840	0.000	3577.097	234.907	2657.610
	(STRAIN)		-8.214E-05	8.800E-05	-8.214E-05	4.119E-05
7	8.00000	0.02758	94.874	94.874	14.209	34.288
	(STRAIN)		2.597E-04	2.597E-04	-1.033E-04	-1.033E-04
7	10.50000	0.02693	89.501	89.501	4.964	23.935
	(STRAIN)		2.646E-04	2.646E-04	-1.158E-04	-1.158E-04
7	20.50000	0.02280	66.740	66.740	-16.230	-8.593
	(STRAIN)		4.449E-04	4.449E-04	-1.082E-04	-1.082E-04
7	30.50000	0.01896	49.384	49.384	-11.992	-8.160
	(STRAIN)		3.292E-04	3.292E-04	-7.995E-05	-7.995E-05
8	0.00000	0.02702	520.000	4257.033	513.489	3585.326

	(STRAIN)		-9.540E-05	9.518E-05	-9.540E-05	6.099E-05
8	8.00000	0.02644	109.442	111.912	14.677	20.635
	(STRAIN)		3.207E-04	3.318E-04	-1.057E-04	-1.057E-04
8	10.50000	0.02567	96.531	99.156	4.607	11.582
	(STRAIN)		2.998E-04	3.116E-04	-1.138E-04	-1.138E-04
8	20.50000	0.02156	62.803	64.828	-15.050	-11.177
	(STRAIN)		4.187E-04	4.322E-04	-1.003E-04	-1.003E-04
8	30.50000	0.01802	44.997	46.567	-11.039	-8.700
	(STRAIN)		3.000E-04	3.104E-04	-7.360E-05	-7.360E-05
9	0.0000	0.02088	0.000	1965.846	134.979	1177.102
	(STRAIN)		-4.081E-05	5.240E-05	-4.081E-05	1.225E-05
9	8.00000	0.02043	51.625	72.687	2.164	8.144
	(STRAIN)		1.355E-04	2.303E-04	-8.709E-05	-6.018E-05
9	10.50000	0.02008	49.292	68.513	-0.425	3.109
	(STRAIN)		1.387E-04	2.252E-04	-8.498E-05	-6.907E-05
9	20.50000	0.01776	39.036	48.067	-10.865	-10.437
	(STRAIN)		2.602E-04	3.204E-04	-7.243E-05	-6.958E-05
9	30.50000	0.01545	30.859	36.611	-8.301	-8.239
	(STRAIN)		2.057E-04	2.441E-04	-5.534E-05	-5.534E-05
10	0.00000	0.01446	0.000	480.008	-399.765	-5.675
	(STRAIN)		-1.374E-06	2.335E-05	-2.144E-05	-2.144E-05
10	8.00000	0.01441	16.009	34.173	-3.650	3.349
	(STRAIN)		3.252E-05	1.143E-04	-5.594E-05	-2.445E-05
10	10.50000	0.01433	16.426	34.885	-3.597	1.732
	(STRAIN)		3.539E-05	1.185E-04	-5.471E-05	-3.073E-05
10	20.50000	0.01346	16.934	28.285	-8.010	-5.724
	(STRAIN)		1.129E-04	1.886E-04	-5.340E-05	-3.816E-05
10	30.50000	0.01236	16.100	24.272	-6.510	-5.241
	(STRAIN)		1.073E-04	1.618E-04	-4.340E-05	-3.494E-05
11	0.00000	0.01049	0.000	201.230	-247.188	17.025
	(STRAIN)		1.288E-06	1.067E-05	-1.216E-05	-1.216E-05
11	8.00000	0.01047	4.219	16.130	-4.282	1.147
	(STRAIN)		3.824E-06	5.742E-05	-3.443E-05	-9.999E-06
11	10.50000	0.01046	4.680	17.449	-3.926	0.714
	(STRAIN)		4.451E-06	6.191E-05	-3.428E-05	-1.340E-05
11	20.50000	0.01019	6.282	15.657	-5.574	-2.927
	(STRAIN)		4.188E-05	1.044E-04	-3.716E-05	-1.951E-05
11	30.50000	0.00973	7.226	14.892	-4.755	-3.042
	(STRAIN)		4.817E-05	9.928E-05	-3.170E-05	-2.028E-05

Anexo 13- Resultados dos ensaios laboratoriais

DELEGAÇÃO PROVINCIAL DE NIASSA

Av. 25 de Setembro, N° 219 Caixa Postal N° 192 Telefax: +258 27 12 03 52 - Cell: +258 82 30 14 889 NUIT: 500000988/10

VD	n°	8	8	7

EXMOST.
BY1 Engentains
consultary, Lang

Registo n°

NUIT....

Data 01 / 11 /20 22

Qtd	Designação	P. Unitário	Venda Mt
	Emsaios		45.110,00
	Caboratoriais		
	transferencie		
	Sand: guarente		
	e cimeo mil e		
	Cerito e Dez		
Motivo de	não aplicação do imposto	Sub Total	45,110,00
		IVA 17%	
		Total	45,110,00
		C#r	ON CHONALD
Dinh	neiro Cheque n°		Outros
	Decuision of		Ourros
Guia de Rem	essa n° Requisição n°		ANUNCTRAÇADARACIONAL DE ESTRA
			A PROVINCIAL OF

Exmos. Srs:

DEPARTAMENTO TÉCNICO

BVI Eengenheiros e Consultores Moçambique Lda

Att: M.K.H. ABDULA

Administrador

= MAPUTO =

Vossa Referência

Vossa Comunicação

Nossa Referência /DETEC/DPN/2022 Data 10/11/2022

Assunto: Envio de resultados de testes Laboratoriais

Serve-se da presente para em anexo enviar à V. Excia os resultados de testes Laboratoriais de Granulometrias, Limites de Consistência, Compactações e CBRs, referente a obra de pavimentação da Rua 4 de Outubro no Município de Marrupa, segundo a vossa solicitação.

Gostaríamos de expressar o nosso privilégio de puder contribuir na garantia da qualidade das obras através de testes Laboratoriais.

Sem mais de momento, cordiais saudações

O Delegado Provincial

Oreste Zezela

Avenida 25 de Setembro 219 - Caixa Postal 195 - Telefones- (271) 20579 Fax- (271) 21289 LICHINGA.

J7.11.2022

ANE - DEN - DEPARTAMENTO DE ENGENHARIA

COMPACTAÇÃO

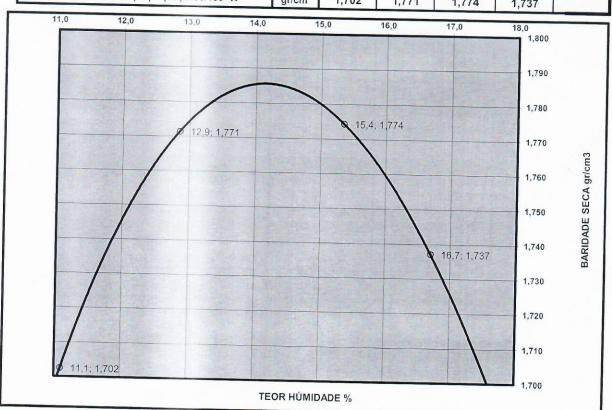
LABORATÓRIO PROVINCIAL DE NIASSA

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

PROJECTO: PAVIMENTAÇÃO DA RUA 4 DE OUTUBRO

AMOSTRA Nº:

CAMADA ENSAIADA: A1 TJDM - TEST PIT (1 EFECTUADO POR : LAB-NIASSA BARIDADE SECA MÁX. 1,785 gr/cm³ TEOR HUMIDADE ÓPTIMO _14,2___ %


DATA: 20/10/202

1. DETERMINAÇÃO DA BARIDADE HÚMIDA

NÙMERO DO MOLDE	N°	M14	M14	M14	M14	_
% DE ÁGUA ADICIONADA	%	10	12	14	16	
QUANTIDADE DE ÁGUA ADICIONADA	СС	600	720	840	960	
PESO DO MOLDE + SOLO HÙMIDO (P1)	gr	9105	9354	9464	9419	
PESO DO MOLDE (P2)	gr	4736	4736	4736	4736	
PESO DO SOLO HÙMIDO (Ph)= (P1) - (P2)	gr	4369	4618	4728	4683	
VOLUME DO MOLDE (V)	cm ³	0,000433	0,000433	0,000433	0.000433	
BARIDADE HÙMIDA DO SOLO (Dh) = (Ph)/V	gr/cm ³	1,891	1,999	2.047	2,027	

2. DETERMINAÇÃO DO TEOR DE HÚMIDADE

NÚMERO DA CÁPSULA	N°	C10	C16	C3	C23
PESO DA CÁPSULA + SOLO HÙMIDO (M1)	gr	654,60	666,60	632,60	662,96
PESO DA CÀPSULA + SOLO SECO (M2)	gr	600,00	603,20	562,60	583,40
PESO DA CÁPSULA (M3)	gr	107,80	110,00	106.60	107,00
PESO DA ÁGUA (Ma) = (M1) - (M2)	gr	54,60	63,40	70,00	79,56
PESO DO SOLO SECO (Ms) = (M2) - (M3)	gr	492,20	493,20	456.00	476,40
TEOR DE HÚMIDADE W = (Ma)/(Ms) × 100	%	11,1	12,9	15,4	16,7
BARIDADE SECA SOLO (Ds) = (Dh)×100/100+W	gr/cm ³	1,702	1,771	1,774	1,737

Delegação Provincial da ANE- Niassa

Comprimento do Moulde

Distância Retraída

Retração Linear

(L1)

 $L.S. = (L2) / (L1) \times 100$

mm

mm

%

150,00

7,00

4,7

150,00

8,00

5,3

21,4

10,0

5,0

%

Limite Plasticidade

Indice Plasticidade

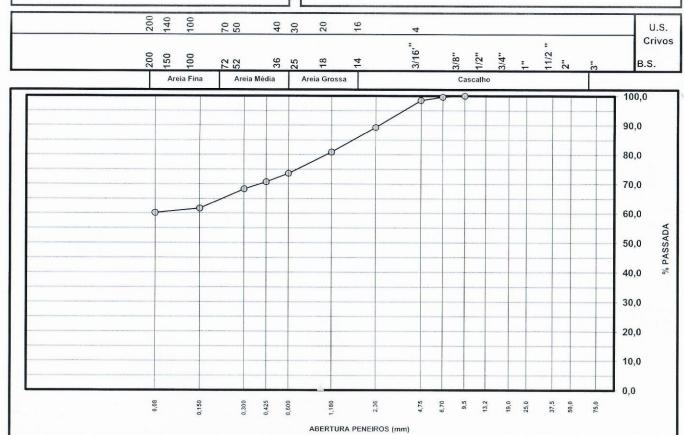
Limite Retração

<u>Laboratório Provincial</u> <u>Ensaio de Limites de Atterberg</u>

CONSULTOR / EM	IPREITEII	Ro: BVI C	ON	STRU	ÇÕES						
		de Outubro -	Mun	icípio d	de Marr	ира					
CAMADA ENSAIAI	DA:		A	1 - TE	ST F	1) דוי)				
AMOSTRA N° :		EFEC	TUAD	O POR : L	ab. Niass	a VE	RIFICADO	POR: ISSUE	0	Dat	a: 19.10.
DESCRIÇÃO DO S	OLO:					- 14 - 15 - 15 - 15 - 15 - 15 - 15 - 15				_	
			1. DE	TERMINA	ÇÃO DO LI	MITE DE L	IQUIDEZ				
Nº da Cápsula	11-		Nº	D6	D7	D8					
Peso Solo Húmido	o + Cápsu	ıla (P0)	gr	83,00	86,00	79,47					
Peso Solo Seco +	Cápsula	(P1)	gr	72,20	75,60	71,40					
Peso da Cápsula		(P2)	gr	42,00	43,00	42,00					
Peso da Água		P3 = (P0) - (P1)	gr	10,80	10,40	8,07					
Peso do Solo Seco	0	P4 = (P1) - (P2)	gr	30,20	32,60	29,40					
Teor de Húmidade	•	W = P3 / P4 x 100	gr	35,8	31,9	27,4					
Nº de Pancadas		3,100	N°	14	27	37					
			_								
	45										
T e o r											
o r	40										
d e	1										
H	35										
m											
m d a d	30										
d e											•
%	25										
	25										
	1										
	20										
		11		15						+++-	
				15	Niće	20 mero de P		25	30	35	
			2. DF1	FRMINAC	ÃO DO LIM			DE			
Nº da Cápsula			N°	H4		TIL DE FE	ASTICIDA	I I			
Peso do Solo Húm	ido + Cáp	osula (P0)	gr	56,64	H7 56,52						
Peso Solo Seco + (-	(P1)	gr	54,20	54,00			1			
Peso da Cápsula		(P2)	gr	43,00	42,00						
Peso da Água		P3 = (P0) - (P1)	gr	2,44	2,52						
Peso do Solo Seco		P4 = (P1) - (P2)	gr	11,20	12,00						
Teor de Húmidade	1	W = P 3 / P 4 × 100	gr	21,8	21,0						
	3. D	ETERMINAÇÃO DO	LIMIT	E DE RETI	RAÇÃO			4. R	ESUMO RES	SULTADOS	
Nº do Moulde		10.00.00.00.00.00	N°	R11	R16			Limite de	Liquidez	31,4	. %

ANE-DEL-DE NIASSA GRANULOMETRIA

LABORATÒRIO PROV. DE SOLOS NIASSA


Cascalho:	10,7	%
Areia Grossa:	15,7	%
Areia Média:	5,3	%
Areia Fina:	8,1	%
Elem. < 0.075 mm	60,2	%

Módulo	Granulomet.	G.M.	=	0,80
--------	-------------	------	---	------

Penneiro mm	Peso Retido	% Retida	% Passada
75.0			
50.0			
37.5			
25.0			
19.0			
13.2			
9.5			100,0
6.7	7,8	0,4	99,6
4.75	22,4	1,1	98,5
2.00	184,2	9,2	89,3
1.18	168,0	8,4	80,9
0.600	146,0	7,3	73,6
0.425	57,4	2,9	70,7
0.300	48,8	2,4	68,3
0.150	132,8	6,6	61,6
0.075	29,4	1,5	60,2
Base (P2)	3,4		
(P1)	1199,8		
< 0.075	1203,2	60,2	
P.Total	2000,0		

Peso Total Pass. 0.075mm = (P1)+(P2)

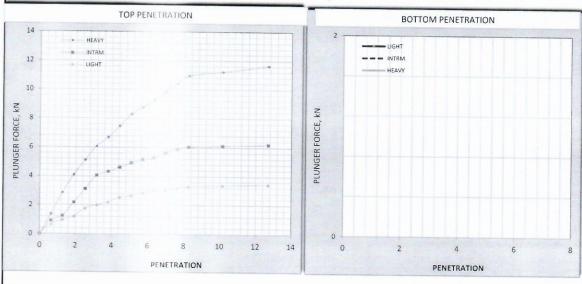
Peso Seco Antes Lavagem	2000,0	gr	CONSULTOR/EMPREITEIRO:	BVI CONSTRU	JÇÕES	
Peso Seco Após Lavagem	800,2	gr	PROJECTO: RUA 4 DE O	UTUBRO	DATA:	18/10/22
			AMOSTRA Nº :	<u>A1 -</u>	TEST PIT	(1)
Peso Fr. Lavada < 0.075mm	1199,8	gr (P1)	DESCRIÇÃO DO SOLO :			

Projecto: PAV. RUA 4 DE OUTUBRO A1 TJDM - TEST PIT (1)

Ref. No.		Location		MUNIC	CIPIO DE		le/Pit No.	TMH1 A8					
Sampling Date	10/Oct/22	Casting	Date		ct-2022		ation Date		ole-1	Depth			
Description			SATUR				g Period		Oct/22	proving			
Water to be added					T _	1	y renod		days	ring factr	-	1	
Present MC. %	Average MC %	1	CMO W	1		ık No.		1		Layer			
1,0 1,0	1,0		OMC, %	Target OMC - MC (%)			Mass of soil, g		MDD Kg/m3		Water		
			14,2	13,2			Total International	18000		1785		2376 m	ı
Compaction Method						mer No.	В	Balan	ce No.	2	Base No	,	8
	Mic			re moulding								5000	T
Container No.			GHT	INT	RM.	HE	AVY		Нуб	ro. Moistu	ire conten	it (%)	
		C12	C12	7K	7K	C20	C20		C1	C1	C6	C6	
Mass of container, of		124,0	124,0	107,2	107,2	109,6	109,6		108,6	108,6	177,6	177,6	-
Mass of wet soil +co		571.8	571,8	595,0	595,0	595,2	595,2		631,6	631.6	651,9	-	
Mass of dry soil +co	ntainer, g	516,0	516,0	534,2	534,2	534,8	534,8	1			-	651,9	-
Moisture content		14,2	14,2	14,2	14,2	14,2	14.2		626,4	626,4	647,0	647,0	
Avergae moisture co	ontent	1	4,2	14	-	14,2		-	1,0	1,0	1,0	1,0	
		Densit	y Determin				,2		1	1,0	1,	110	
		LIC	GHT	INTE	RM.	HEA	VY		SVVE	LL DETER			
Mould No.		M	24	M2	2	M1		Initial Dial G	Sauge Settin	าต	LIGHT 23.00		HEAVY
/olume of mould	2310			230	08			Final Dial G			26.00	13,00 15,30	15,0 16,5
Mass of mould + Soi			40	472	///	475	50	Difference (5	3,00	2,3	1,1
000 of - 1		_	28	903		934	19	Percentage	Swell		2,36	1,81	1,18
C/ Daneit			430		459	99			Accepted		1,01	1,11	
arget Density			35	163		174		LIGH	-IT	INTE	RM.	HEA	AVY
Compaction		80	85	1785		178	15	1					
ESTING		00		91,	5	97,	5	<u>'</u>		3		6	3
			Dial Gar	ge Reading		7/							
Penetration (mr	n) Top	Bottom	Тор	Bottom	Тор	D.11			T	ivalent For	ce in kN		
	LIGH		INTE		HEA	Bottom		Тор	Bottom	Тор	Bottom	Тор	Bottom
0,000	0		0	2000	0	V 1		LIGH	1	INTR	M.	HEA	VY
0,635	0		0		0			0,00		0,00		0,00	
1,270	0		0		1			0,04		0,14		0,30	
1,905	0		0		1			0,05		0,24		0,50	
2,540	0		0		1			0,10		0,34		0,70	
3,175	0		0		1			0,11		0,40		0,82	
3,810	0		1		1		1	0,14		0,46	-	0,92	
4,445	0		1		1		1	0,10		0,54		1,02	
5,080	0		1		1		-	0,20		0,60		1,14	
	0		1		1		-	0,21		0,62		1,30	
5,715	0		1		2		1	0,24		0,66		1,48	
6,350	0		1		2		-	0,24		0,72		1,66	
6,350 6,985			1		2		-	0,25		0,76		1,86	
6,350 6,985 7,620	0				2		-	0,26		0,80		1,98	
6,350 6,985 7,620 8,255	0		1		122			0,28		0,83		2,16	
6,350 6,985 7,620 8,255 10,160			1		2		-						
6,350 6,985 7,620 8,255 10,160 12,700	0 0				2							2,26	
6,350 6,985 7,620 8,255 10,160 12,700	0 0		1					0,29		0,90		2,26	
6,350 6,985 7,620 8,255 10,160 12,700	0 0 0 BR %	CBR at 2.5	1	ation				0,29		0,90		2,67	
6,350 6,985 7,620 8,255 10,160	0 0 0 0 BR %		1 1					0,29	0	0,90	0	-	0
6,350 6,985 7,620 8,255 10,160 12,700	0 0 0 0 BR %		1 1 mm penetr					0,29	0	0,90		2,67	0

Ref. No.

Consultor/Empreiteiro: BVI CONSTRUÇÕES


A1 TJDM - TEST PIT (1)

0

CBR TEST

REF TEST METHOD: AASHTO T193/TMH1 A8

CBR CALCULATIONS FROM THREE POINT CBR CHART

							THREE P	OINT CBR CHART		
	LIGHT	INTRM.	HEAVY		1000					-
DRY DENSITY	1435	1633	1741							
CBR	1	3	6							
				CBR	100					
	DD	CBR								
AT 90 % MDD	1607	13					-			
AT 93 % MDD	1660	15			10					
AT 95% MDD	1696	20								
AT 98% MDD	1749	30								
					1790	1840		1890	1940	
		- que					Dry	Density kg/m³		
			Oper	ator				(Checked by:	
Technician:							Technic	ian:		-

Date

ANE - DEN - DEPARTAMENTO DE ENGENHARIA

COMPACTAÇÃO LABORATÓRIO PROVINCIAL DE NIASSA

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

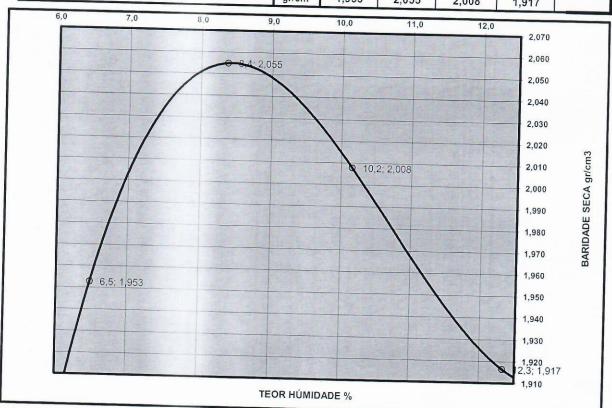
PROJECTO: PAVIMENTAÇÃO DA RUA 4 DE OUTUBRO

AMOSTRA Nº :

camada ensaiada: C.E Cachereni - Marrupa

EFECTUADO POR : LAB-NIASSA

BARIDADE SECA MÁX. 2,055 gr/cm³ TEOR HUMIDADE ÓPTIMO _8,4___ %


DATA: 20/10/202

1. DETERMINAÇÃO DA BARIDADE HÚMIDA

NÙMERO DO MOLDE	N°	M14	M14	M14	1000	
% DE ÁGUA ADICIONADA	%	6	0		M14	
QUANTIDADE DE ÁGUA ADICIONADA			400	10	12	
PESO DO MOLDE + SOLO HÙMIDO (P1)	СС	360	480	600	720	
PESO DO MOLDE (P2)	gr	9539	9880	9845	9709	
PESO DO SOLO HÙMIDO (Ph)= (P1) - (P2)	gr	4736	4736	4736	4736	
/OLUME DO MOLDE (V)	gr	4803	5144	5109	4973	
	cm ³	0,000433	0,000433	0,000433	0,000433	
BARIDADE HÙMIDA DO SOLO (Dh) = (Ph)/V	gr/cm ³	2,079	2,227	2,212	2,153	

2. DETERMINAÇÃO DO TEOR DE HÙMIDADE

NÚMERO DA CÁPSULA	N°	3K	7K	C12	C20
PESO DA CÁPSULA + SOLO HÙMIDO (M1)	gr	636,80	617,40		C20
PESO DA CÀPSULA + SOLO SECO (M2)	gr	604,60	578,00	569,00	605,40
PESO DA CÁPSULA (M3)	gr	107.60		526,60	551,00
PESO DA ÁGUA (Ma) = (M1) - (M2)			107,20	109,00	109,80
PESO DO SOLO SECO (Ms) = (M2) - (M3)	gr	32,20	39,40	42,40	54,40
TEOR DE HÚMIDADE W = (Ma)/(Ms) x 100	gr	497,00	470,80	417,60	441,20
	%	6,5	8,4	10,2	12,3
BARIDADE SECA SOLO (Ds) = (Dh)x100/100+W	gr/cm ³	1,953	2,055	2,008	1,917

ANE-DEL-PROV. DE NASSA LIMITES ATTEBERG LABORATÒRIO PROVINCIAL NIASSA

FORM T2

			DVI	201	IOTOL	loões						
CONSULTOR /										_		
PROJECTO:	Rua	4 de	Outub	ro -	Muni	cípio d	e Mai	rupa				
CAMADA ENSA	AIADA :	CAC	HERE	NI								
AMOSTRA Nº :					ENSAIO E	FECTUADO	POR:	LAB - A	ANE Nia	ssa	DATA:	19/10/20
DESCRIÇÃO D	o solo	:					-	100			-	
				1. D	ETERMINA	ÇÃO DO LI	MITE DE	LIQUIDEZ				
Nº da Cápsula				N°	K38	K37	K24		T			
Peso Solo Húm	nido + Cá	ipsula	(P0)	gr	53,20	52,90	50,03					
Peso Solo Seco	o + Cáps	ula	(P1)	gr	46,30	46,10	44,20					
Peso da Cápsu	la		(P2)	gr	22,40	21,70	22,10					-
Peso da Água		P3 = (P0) - (P1)	gr	6,90	6,80	5,83					
Peso do Solo S	eco	P4 = (P1) - (P2)	gr	23,90	24,40	22,10					
Teor de Húmida	ade	W = P3 /	P4 x 100	gr	28,9	27,9	26,4					-
Nº de Pancadas	5		1911-00	N°	16	23	36					_
		T										
	20											
т	30											
T e o r												
	25											-
d e												
H	20											
m L												
HuE-and	15											
е												
%	10											
	5											
		11			15		20		25	30	3:	5
								Pancadas				
Nº do Cánavila			2			ÃO DO LIMI	TE DE PI	LASTICIDA	DE			
Nº da Cápsula	instala 1.0	- ·	(5.0)	N°	C14	C21						
Peso do Solo Hú Peso Solo Seco			(P0)	gr	33,44	36,96						
Peso da Cápsula		ıa	(P1)	gr	31,70	34,70						
Peso da Água		P3 - /D	(P2) 0) - (P1)	gr	22,20	22,10		-				
Peso do Solo Se	CO		1) - (P2)	gr	1,74	2,26						
Teor de Húmidad		W = P3 / I	-	gr	9,50	12,60						
. cor de riumidat			AÇÃO DO	gr	18,3 E DE DET	17,9						
N° do Moulde	3. 0	LILINIII	-AÇAO DO	N°	Commence of the Commence of th					RESUMO RE	SULTAD	
Comprimento do	Moulde	/1	_1)	mm	V11	V12				e Liquidez	27	,5 %
Distância Retraio	17.			mm	150,00	150,00				asticidade	18	
D		(,		111111	7,00	7,00			Indice P	asticidade	9,	,4 %

Limite Retração

Retração Linear L.S. = (L2) / (L1) x 100

ANE-DEL-DE NIASSA GRANULOMETRIA

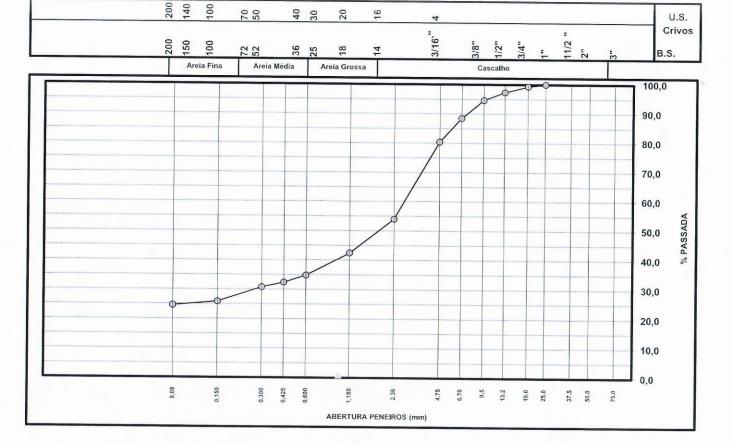
LABORATÒRIO PROV. DE SOLOS NIASSA

Cascalho:	46,0	%
Areia Grossa:	19,2	%
Areia Média:	4,1	%
Areia Fina:	6,2	%
Elem. < 0.075 mm	24,5	9/0

Módulo Granulomet. G.M. = 1,89

Penneiro mm	Peso Retido	% Retida	% Passada
75.0			
50.0			
37.5			
25.0			100,0
19.0	13,4	0,7	99,3
13.2	40,2	2,0	97,3
9.5	53,2	2,7	94,7
6.7	124,2	6,2	88,5
4.75	161,6	8,1	80,4
2.00	527,8	26,4	54,0
1.18	231,4	11,6	42,4
0.600	151,8	7,6	34,8
0.425	49,2	2,5	32,4
0.300	32,4	1,6	30,7
0.150	97,6	4,9	25,9
0.075	26,6	1,3	24,5
Base (P2)	4,2		
(P1)	486,4		
< 0.075	490,6	24,5	
P.Total	2000,0		3 4 4 4 4 4 4 4 4 4 4 4

Peso Total Pass. 0.075mm = (P1)+(P2)


Peso Seco Antes Lavagem	2000,0	gr
Peso Seco Após Lavagem	1513,6	gr
Peso Fr. Lavada < 0.075mm	486,4	gr (P1)

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

PROJECTO: RUA 4 DE OUTUBRO DATA: 18/10/22

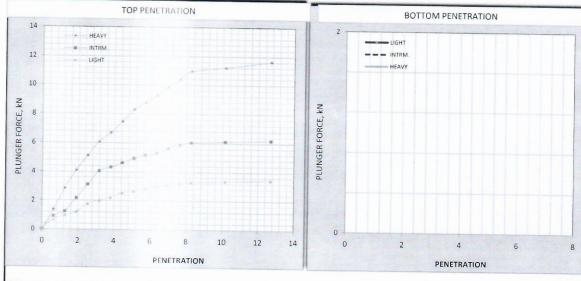
AMOSTRA Nº: CACHERENI

DESCRIÇÃO DO SOLO:

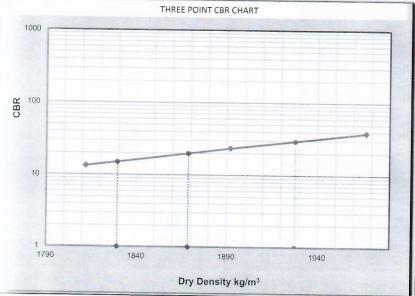
Projecto: PAV. RUA 4 DE OUTUBRO TEST PIT CACHERENI

Ref. No.		Location		MUNICÍI MARR		Borehole	Pit No.	Hole	:-1	Depth			
Sampling Date	10/Oct/22	Casting E	ate	27-Oct	-2022	Penetrat	ion Date	31/00	t/22		BEER		
Description	C	BR S	ATUR	ADO		Soaking	Period	4 da	ays	proving ring factr		1	
Water to be added	d 1440 mI		-		Tanl	No.		1		Layer			***************************************
Present MC, %	Average MC %	Target	OMC, %	Targe	et OMC - MC	(%)		Mass of soil,	9	MUU		Water	
0,4 0.4	0,4	1	3.4		8.0			18000		Kg/m3 2055		1440 ml	
	od:TMH1 Method A	1		DIA C	Hamm	er No	В	Balance	e No	2	Base No.	E	2
Compaction Metric			ntent befor		1	161 140.	D	Dalance	110.	6.	Dase 140		
	IVIC	1					101	1	Hyg	ro. Moistu	re content	(%)	
			GHT	INTE	1	HEA							
Container No.		C11	C11	C17	C17	C5	C5		C18	C18	C14	C14	
Mass of container,	9	108.2	108,2	109,2	109,2	108,2	108,2		106,2	106,2	110,0	110,0	
Mass of wet soil +c	container, g	695,5	695,5	681,4	681,4	703,0	703,0		823,8	823,8	828,6	828,6	
Mass of dry soil +c	container, g	649,8	649,8	637,2	637,2	657,0	657,0		820,8	820,8	825,4	825,4	
Moisture content		8.4	8,4	8,4	8,4	8,4	8,4		0,4	0,4	0,4	0,4	
Avergae moisture	content		3,4	8,	4	8,	4			0,4	0,	4	
		Densit	ty Determin	ation					SWE	LL DETER	MINATION	1	
		LI	GHT	INTE	RM.	HEA	AVY				LIGHT	INTRM.	HEAVY
Mould No.		N.	119	M1	15	M	1	Initial Dial G	auge Setti	ng	752.00	243,00	165,0
Volume of mould		2	301	230	08	22	79	Final Dial G	auge Setti	ng	757,00	247,00	168,0
Mass of mould		-4	735	473	31	47	04	Difference (swell)		5,00	4	
Mass of mould + S	ioil	9	052	922	29	96	57	Percentage	Swell		3,94	3,15	2,3
Mass of soil		4	317	449	98	49	53			Accepted	CBR		
Dry Density		1	730	179		20	05	LIGH	HT.	INT	RM.	HEA	AVY
Target Density			055	205		20		3		4	1	1	7
		B	4.2										
% Compaction			4,2	87	,5	97	,6						
TESTING	V					97	,6						*******
TESTING			Dial Ga	uge Reading			,6		1	uivalent Fo			
		Bottom	Dial Ga Top	uge Reading Bottom	Тор	Bottom	,6	Тор	Bottom	Тор	Bottom	Тор	-
TESTING Penetration (LIC		Dial Ga Top INT	uge Reading	Top HE		,6	LIGH	Bottom	Top	Bottom	HEA	-
Penetration (LIC 0	Bottom	Dial Ga Top INT 0	uge Reading Bottom	Top HE.	Bottom	,6	0,00	Bottom	Top INT 0,00	Bottom	HEA 0,00	-
Penetration (i	0 0	Bottom	Dial Ga Top INT 0	uge Reading Bottom	Top HE.	Bottom	,6	0,00 0,12	Bottom	Top INT 0,00 0,12	Bottom	0,00 0,52	-
Penetration (i 0,000 0,635 1,270	0 0 0	Bottom	Dial Ga Top INT 0 0	uge Reading Bottom	Top HE. 0 1	Bottom	,6	0,00 0,12 0,20	Bottom	Top INT 0,00 0,12 0,26	Bottom	0,00 0,52 1,02	-
Penetration (i 0,000 0,635 1,270 1,905	0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0	uge Reading Bottom	Top HE. 0 1 1 2	Bottom	,6	0,00 0,12 0,20 0,26	Bottom	Top INT 0,00 0,12 0,26 0,42	Bottom	0,00 0,52 1,02 1,66	-
Penetration (0,000 0,635 1,270 1,905 2,540	0 0 0 0 0	Bottom	Dial Ga Top INT 0 0	uge Reading Bottom	Top HE. 0 1 1 2 2	Bottom	,6	0,00 0,12 0,20 0,26 0,37	Bottom	Top INT 0,00 0,12 0,26 0,42 0,48	Bottom	0,00 0,52 1,02 1,66 2,22	-
Penetration (0,000 0,635 1,270 1,905 2,540 3,175	0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 0 0	uge Reading Bottom	Top HE. 0 1 1 2 2 3	Bottom	,,6	0,00 0,12 0,20 0,26 0,37 0,39	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04	-
Penetration (0,000 0,635 1,270 1,905 2,540 3,175 3,810	0 0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 0 1	uge Reading Bottom	Top HE. 0 1 1 2 2	Bottom	,6	LIGH 0,00 0,12 0,20 0,26 0,37 0,39 0,42	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59	Bottom	0,00 0,52 1,02 1,66 2,22	-
Penetration (i 0,000 0,635 1,270 1,905 2,540 3,175 3,810 4,445	0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3	Bottom	,6	0,00 0,12 0,20 0,26 0,37 0,39	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35	-
Penetration (0,000 0,635 1,270 1,905 2,540 3,175 3,810	0 0 0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 0 1 1 1	uge Reading Bottom	Top HE. 0 1 2 2 3 3 3 4	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76	-
Penetration (0,000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080	0 0 0 0 0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1	uge Reading Bottom	Top HE 0 1 1 2 2 3 3 3 4 4 4	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16	-
Penetration (0,000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715	0 0 0 0 0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1	uge Reading Bottom	Top HE 0 1 1 2 2 3 3 4 4 5 5	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50	-
Penetration (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0 0 0 0 0 0 0 0 0 0	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3 4 4 5 5	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82	-
Penetration (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0 0 0 0 0 0 0 0 0 0 0 1 1 1	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3 3 4 4 5 5 5 5 5	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72 0,74	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08	-
Penetration (iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3 3 4 4 5 5 5 5 5 5 5	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70 0,74	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72 0,74 0,78	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08 5,48	-
Penetration (i 0,000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255	Discourse in the control of the cont	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3 3 4 4 5 5 5 5 5 6 6	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70 0,74 0,76	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72 0,74 0,78 0,82	Bottom	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08 5,48 5,76	-
Penetration (0000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160	Description of the control of the co	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1 1 1 1 1	uge Reading Bottom	Top HE. 0 1 1 2 2 3 3 4 4 5 5 5 5 6 6 6 6 6	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70 0,74 0,76 0,80	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,69 0,70 0,72 0,74 0,78 0,82 0,84	Bottom	HEA 0.00 0.52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08 5,48 5,75 5,98	-
Penetration (0000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	Description of the control of the co	Bottom	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1 1 1 1 1	uge Reading Bottom RM.	Top HE. 0 1 1 2 2 3 3 4 4 5 5 5 5 6 6 6 6 6	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70 0,74 0,76 0,80	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,69 0,70 0,72 0,74 0,78 0,82 0,84	Bottom	HEA 0.00 0.52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08 5,48 5,75 5,98	-
Penetration (0000 0,635 1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	Description of the control of the co	Bottom SHT	Dial Ga Top INT 0 0 0 0 1 1 1 1 1 1 1 1 1 1	uge Reading Bottom RM.	Top HE. 0 1 1 2 2 3 3 4 4 5 5 5 5 6 6 6 6 6	Bottom	.6	0,00 0,12 0,20 0,26 0,37 0,39 0,42 0,45 0,54 0,58 0,62 0,70 0,74 0,76 0,80 0,82	Bottom	Top INTI 0,00 0,12 0,26 0,42 0,48 0,56 0,59 0,66 0,70 0,72 0,74 0,78 0,82 0,84 0,85	Bottom RM.	HEA 0,00 0,52 1,02 1,66 2,22 3,04 3,35 3,76 4,16 4,50 4,82 5,08 5,48 5,75 5,98 6,34	

TEST PIT CACHERENI


CBR TEST

REF TEST METHOD: AASHTO T193/TMH1 A8


0

CBR CALCULATIONS FROM THREE POINT CBR CHART

	LIGHT	INTRM.	HEAVY	
DRY DENSITY	1730	1798	2005	
CBR	3	4	17	

	DD	CBR
AT 90 % MDD	1850	13
AT 93 % MDD	1911	15
AT 95% MDD	1952	20
AT 98% MDD	2014	30

Operator: Checked by:
Technician:
Date
Date
Checked by:
Technician:
Date

ANE - DEN - DEPARTAMENTO DE ENGENHARIA

COMPACTAÇÃO LABORATÓRIO PROVINCIAL DE NIASSA

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

PROJECTO: PAVIMENTAÇÃO DA RUA 4 DE OUTUBRO

CAMADA ENSAIADA: A3 ESCOLA - TEST PIT (3

AMOSTRA Nº: EFECTUADO POR: LAB-NIASSA

BARIDADE SECA MÁX. 1,953 gr/cm³ TEOR HUMIDADE ÓPTIMO $_12,0$ %

DATA: 19/10/202

1. DETERMINAÇÃO DA BARIDADE HÚMIDA

NÙMERO DO MOLDE	N°	M14	M14	M14	M14	
% DE ÁGUA ADICIONADA	%	10	12	14	16	
QUANTIDADE DE ÁGUA ADICIONADA	СС	600	720	840	960	
PESO DO MOLDE + SOLO HÙMIDO (P1)	gr	9599	9797	9611	9462	
PESO DO MOLDE (P2)	gr	4736	4736	4736	4736	
PESO DO SOLO HÙMIDO (Ph)= (P1) - (P2)	gr	4863	5061	4875	4726	
VOLUME DO MOLDE (V)	cm ³	0,000433	0,000433	0,000433	0,000433	
BARIDADE HUMIDA DO SOLO (Dh) = (Ph)/V	gr/cm ³	2,105	2,191	2,110	2,046	

2. DETERMINAÇÃO DO TEOR DE HÚMIDADE

NÚMERO DA CÁPSULA	N°	C5	3N	C8	Q6	
PESO DA CÁPSULA + SOLO HÙMIDO (M1)	gr	632,80	629,40	605,20	622,40	_
PESO DA CÀPSULA + SOLO SECO (M2)	gr	582,20	572,20	541,20	550,40	
PESO DA CÁPSULA (M3)	gr	108,00	106,00	108,40	107,00	
PESO DA ÁGUA (Ma) = (M1) - (M2)	gr	50,60	57,20	64,00	72,00	a Marca
PESO DO SOLO SECO (Ms) = (M2) - (M3)	gr	474,20	466,20	432,80	443,40	
TEOR DE HÚMIDADE W = (Ma)/(Ms) x 100	%	10,7	12,3	14,8	16,2	
BARIDADE SECA SOLO (Ds) = (Dh)x100/100+W	gr/cm ³	1,902	1,951	1,839	1,760	-

Delegação Provincial da ANE- NIASSA

<u>Laboratório Provincial</u> <u>Ensaio de Limites de Atterberg</u>

CONSULTOR / EMPI	REITEIR	o: BVI C	ON	STRU	ÇÕES						
ркојесто: Ки		The state of the s				ına					
CAMADA ENSAIADA :					o marre	.pu					
	-			` /		078-272					
AMOSTRA N° :		EFEC	TUADO	POR: L	ab. Niass	a VEI	RIFICADO	POR: ISSUF)	Data:	19/10/2
DESCRIÇÃO DO SO	LO:	Section 100 Control									
			1. DE	TERMINAÇ	ÃO DO LIN	IITE DE LI	QUIDEZ				
Nº da Cápsula			N°	98	1	16					
Peso Solo Húmido +	- Cápsul	a (P0)	gr	38,40	38,00	38,60					
Peso Solo Seco + Ca	ápsula	(P1)	gr	31,80	31,60	32,20					
Peso da Cápsula		(P2)	gr	14,40	14,00	14,60					
Peso da Água		P3 = (P0) - (P1)	gr	6,60	6,40	6,40					
Peso do Solo Seco		P4 = (P1) - (P2)	gr	17,40	17,60	17,60					
Teor de Húmidade	3	W = P3 / P4 x 100	gr	37,9	36,4	36,4					
Nº de Pancadas			N°	18	27	34					
Γ			1								П
-	40										
T e o r			+								
200	35										
d e											
H	30										
m d											
a d	25		-								-
е											
%	20										
-											
	15										
1											
- 1		11		15		20		25	30	35	
						mero de P					
No. 1 of					ÃO DO LIM	ITE DE PL	ASTICIDA	DE			
Nº da Cápsula			N°	D5	D9						
Peso do Solo Húmio			gr	58,24	60,43		-				
Peso Solo Seco + Ca	ápsula	(P1)	gr	54,60	56,40						
Peso da Cápsula		(P2)	gr	41,60	41,80						
Peso da Água		P3 = (P0) - (P1)	gr	3,64	4,03						
Peso do Solo Seco		P4 = (P1) - (P2)	gr	13,00	14,60	-	-				
Teor de Húmidade		W = P3 / P4 x 100	gr	28,0	27,6						
NO de Ment	3. D	ETERMINAÇÃO DO						The same of the sa	SUMO RES		
Nº do Moulde			N°	M-1	M-15			Limite de l	924	35,8	%
Comprimento do Mo	ulde	(L1)	mm	150.00	150.00			Limita Plac	tioidado	27 8	0/

mm

%

6,00

4,0

6,00

4,0

Indice Plasticidade

Limite Retração

8,0

4,0

(L2)

 $L.S. = (L2) / (L1) \times 100$

Distância Retraída

Retração Linear

ANE-DEL-DE NIASSA GRANULOMETRIA

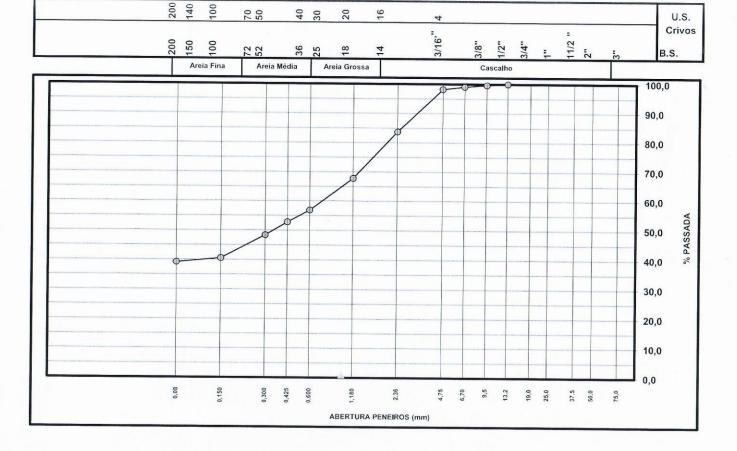
LABORATÒRIO PROV. DE SOLOS NIASSA

			ī
Cascalho:	16,3	%	
Areia Grossa:	26,8	%	
Areia Média:	8,5	%	
Areia Fina:	9,2	%	
Elem. < 0.075 mm	39,1	0/0	

Módulo Granulomet. G.M. = 1,24

Penneiro	Peso	%	%
mm	Retido	Retida	Passada
75.0			
50.0			
37.5			
25.0			
19.0			
13,2			100,0
9.5	7,4	0,4	99,6
6.7	10,8	0,5	99,1
4.75	17,2	0,9	98,2
2.00	291,4	14,6	83,7
1.18	317,8	15,9	67,8
0.600	218,4	10,9	56,9
0.425	81,8	4,1	52,8
0.300	88,6	4,4	48,3
0.150	156,2	7,8	40,5
0.075	28,0	1,4	39,1
Base (P2)	4,8		
(P1)	777,6		
< 0.075	782,4	39,1	
P.Total	2000,0		Televinia de la

Peso Total Pass. 0.075mm = (P1)+(P2)


2000,0	gr
1222,4	gr
777,6	gr (P1)
	1222,4

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

PROJECTO: RUA 4 DE OUTUBRO DATA: 18/10/22

AMOSTRA Nº: A3 - TEST PIT (3)

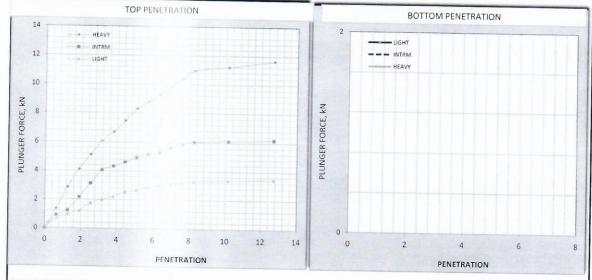
DESCRIÇÃO DO SOLO:

Projecto: PAV. RUA 4 DE OUTUBRO A3 ESCOLA - TEST PIT (3)

Ref. No.		Location		MUNIC	ÍPIO DE RUPA		le/Pit No.	TMH1 A8	le-1				
Sampling Date	10/Oct/22	Casting	Date	10000	t-2022	Penetra	ition Date	31/0	ct/22	Depth			
Description		CBR S	SATUR	ADO			g Period	4 d	Neglisia Canada Alexandra	proving		1	
Water to be added	2070 m	ıl .	0.000.000000000000000000000000000000000		Tan	k No.				ring factr			
Present MC, % A	verage MC %	Target	OMC, %	Targe	et OMC - MC			1		Layer			
0,5 0,5	0,5		12.0	raigi	11,5	~ (70)		Mass of soil,	g	Kg/m3		Water	
Compaction Method:T								18000		1953		2070 m	1
				re moulding		ner No.	В	Baland	e No.	2	Base No.		В
		T						7	Hya	ro. Moistu	re conton	+ /9/ \	
Container No.			GHT	INTI	1	HEA	AVY		1198	i o. moistu	ne conten	(%)	
Mass of container, q		3N	3N	5N	5N	Q6	Q6		C16	C16	3K	3K	1
		105.8	105,8	109,8	109,8	107,0	107,0		109,8	109,8	107,6	107,6	
Mass of wet soil +cont		620,6	620,6	626,4	626,4	606,4	606,4		724,0	724,0	674,0	674,0	
Mass of dry soil +conta	ainer, g	565,4	565,4	571,2	571,2	552,8	552,8		721,0	721,0	671,4	671,4	+
Moisture content		12,0	12,0	12,0	12,0	12,0	12,0		0,5	0,5	0,5	0,5	1
Avergae moisture cont	ent	1:	2.0	12,	,0	12	,0			0,5	0,5		
		Densit	y Determin	ation					1	LL DETER			
Mould No			GHT	INTR	RM.	HEA	VY				LIGHT	INTRM.	HEAV
Volume of mould		100	26	M1		M	4	Initial Dial G	auge Settir	ng	16,00	19.00	20.0
Mass of mould			814	230		231	14	Final Dial Ga	auge Settin	ig	20.00	22.00	22.0
Mass of mould + Soil			18	475		470		Difference (s	swell)		4,00	3,00	
Mass of soil			29	958		970		Percentage	Swell		3,15	2,36	1,5
Dry Density		45	40	483		499				Accepted	CBR		
arget Density			53	187		192		LIGH	IT	INTE	RM.	HE	AVY
6 Compaction		- 89		195		195		10		22		3	c
TESTING				33,0	1	98,	ь						
			Dial Gau	ge Reading					-	=		711700	
Penetration (mm)	Тор	Bottom	Тор	Bottom	Тор	Bottom		Тор	Bottom	ivalent For			
	LIG	HT	INTE	RM.	HEA			LIGH		Top	Bottom	Тор	Bottom
0,000	0		0		0			0,00		0.00	IVI.	HEA	AVY
30000000000	4		1		1			0,58		0,92		0,00	
0,635	1									200000000000000000000000000000000000000		2.62	
1,270	1		2		3			0,74					-
1,270 1,905	1		2		4			1,22		1,84		Trial Course	
1,270 1,905 2,540	1 1 1		2									3,82	
1,270 1,905 2,540 3,175	1 1 1		2 3 3		4 5 6			1,22		2,42		Trial Course	
1,270 1,905 2,540 3,175 3,810	1 1 1 1		2 3 3 4		4 5 6 7			1,22 1,40		2,42 2,96		3,82 4,84	
1,270 1,905 2,540 3,175 3,810 4,445	1 1 1 1 1 1 2		2 3 3 4 4		4 5 6 7 7			1,22 1,40 1,45		2,42 2,96 3,24		3,82 4,84 5,76	
1,270 1,905 2,540 3,175 3,810 4,445 5,080	1 1 1 1 1 1 2 2		2 3 3 4 4 4		4 5 6 7 7 8			1,22 1,40 1,45 1,46		2,42 2,96 3,24 3,54		3,82 4,84 5,76 6,50	
1,270 1,905 2,540 3,175 3,810 4,445	1 1 1 1 1 1 2 2		2 3 3 4 4 4 4		4 5 6 7 7 8 9			1,22 1,40 1,45 1,46 1,72 1,84 1,90		2,42 2,96 3,24 3,54 3,76		3,82 4,84 5,76 6,50 7,22	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715	1 1 1 1 1 1 2 2		2 3 3 4 4 4 4 4		4 5 6 7 7 8 9			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40		3,82 4,84 5,76 6,50 7,22 7,56	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350	1 1 1 1 1 2 2 2 2 2 2		2 3 3 4 4 4 4 4 4 5		4 5 6 7 7 8 9 9			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54		3,82 4,84 5,76 6,50 7,22 7,56 8,50	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985	1 1 1 1 1 2 2 2 2		2 3 3 4 4 4 4 4 4 5 5		4 5 6 7 7 8 9 9			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620	1 1 1 1 1 2 2 2 2 2 2 2		2 3 3 4 4 4 4 4 4 5		4 5 6 7 7 8 9 9 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2		2 3 3 4 4 4 4 4 5 5 5		4 5 6 7 7 8 9 9 10 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12 2,13		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72 4,74		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42 9,75	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		2 3 3 4 4 4 4 4 5 5 5 5		4 5 6 7 7 8 9 9 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CBR at 2.5	2 3 3 4 4 4 4 4 5 5 5 5 5	ation	4 5 6 7 7 8 9 9 10 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12 2,13 1,14		2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72 4,74 4,75		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42 9,75	
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 3 %		2 3 3 4 4 4 4 4 5 5 5 5 5 5		4 5 6 7 7 8 9 9 10 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12 2,13 1,14	0	2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72 4,74 4,75	0	3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42 9,75	0
1,270 1,905 2,540 3,175 3,810 4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 3 %		2 3 3 4 4 4 4 4 5 5 5 5 5 5 9 mm penetr		4 5 6 7 7 8 9 9 10 10 10			1,22 1,40 1,45 1,46 1,72 1,84 1,90 1,94 2,02 2,10 2,12 2,13 1,14	0	2,42 2,96 3,24 3,54 3,76 4,04 4,22 4,40 4,54 4,70 4,72 4,74 4,75		3,82 4,84 5,76 6,50 7,22 7,56 8,50 9,00 9,52 9,96 10,42 9,75 10,44	0 0

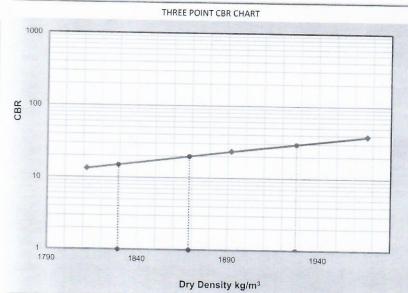
A3 ESCOLA - TEST PIT (3)

0



CBR TEST

REF TEST METHOD: AASHTO T193/TMH1 A8


0

CBR CALCULATIONS FROM THREE POINT CBR CHART

	LIGHT	INTRM.	HEAVY
DRY DENSITY	1740	1871	1925
CBR	10	22	36

	DD	CBR
AT 90 % MDD	1758	13
AT 93 % MDD	1816	15
AT 95% MDD	1855	20
AT 98% MDD	1914	30

Operator: Checked by:
Technician:
Date Date

ANE - DEN - DEPARTAMENTO DE ENGENHARIA

<u>COMPACTAÇÃO</u>

LABORATÓRIO PROVINCIAL DE NIASSA

CONSULTOR/EMPREITEIRO: BVI CONSTRUÇÕES

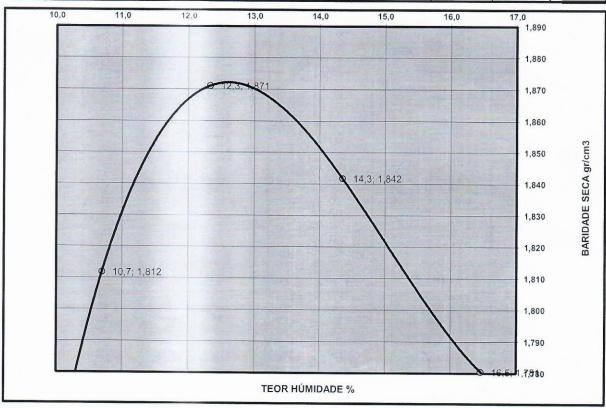
PROJECTO: PAVIMENTAÇÃO DA RUA 4 DE OUTUBRO

CAMADA ENSAIADA: A2 CURVA - TEST PIT

AMOSTRA Nº:

EFECTUADO POR : LAB-NIASSA

BARIDADE SECA MÁX. 1,872_gr/cm³ TEOR HUMIDADE ÓPTIMO _12,6___ %


DATA: 20/10/202

1. DETERMINAÇÃO DA BARIDADE HÚMIDA

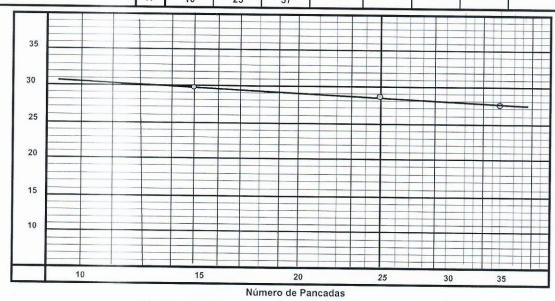
NÙMERO DO MOLDE	N°	M14	M14	M14	M14	
% DE ÁGUA ADICIONADA	%	10	12	14	16	
QUANTIDADE DE ÁGUA ADICIONADA	СС	600	720	840	960	
PESO DO MOLDE + SOLO HÙMIDO (P1)	gr	9369	9591	9601	9526	
PESO DO MOLDE (P2)	gr	4736	4736	4736	4736	
PESO DO SOLO HÙMIDO (Ph)= (P1) - (P2)	gr	4633	4855	4865	4790	
VOLUME DO MOLDE (V)	cm ³	0,000433	0,000433	0,000433	0,000433	
BARIDADE HÙMIDA DO SOLO (Dh) = (Ph)/V	gr/cm ³	2,006	2,102	2,106	2,074	

2. DETERMINAÇÃO DO TEOR DE HÚMIDADE

NÚMERO DA CÁPSULA	N°	C17	C11	C15	5N
PESO DA CÁPSULA + SOLO HÙMIDO (M1)	gr	668,00	644,20	628,80	638,20
PESO DA CÀPSULA + SOLO SECO (M2)	gr	614,00	585,40	563,40	563,40
PESO DA CÁPSULA (M3)	gr	109,20	108,40	107,60	109,00
PESO DA ÁGUA (Ma) = (M1) - (M2)	gr	54,00	58,80	65,40	74,80
PESO DO SOLO SECO (Ms) = (M2) - (M3)	gr	504,80	477,00	455,80	454,40
TEOR DE HÚMIDADE W = (Ma)/(Ms) x 100	%	10,7	12,3	14,3	16,5
BARIDADE SECA SOLO (Ds) = (Dh)x100/100+W	gr/cm ³	1,812	1,871	1,842	1,781

ANE-DEN-DEPARTAMENTO DE ENGENHARIA

LIMITES ATTEBERG LABORATÒRIO PROVINCIAL DE NIASSA


FORM T2

CONSULTOR / EMPREITEIRO : BVI (CONSTRUÇÕES	
ркојесто : Rua 4 de Outubro -		
CAMADA ENSAIADA: A2 - TE	ST PIT (2)	•
AMOSTRA N° :	ENSAIO EFECTUADO POR : Lab - Niassa	DATA: 19-10-2022
DESCRIÇÃO DO SOLO :		

1. DETERMINAÇÃO DO LIMITE DE LIQUIDEZ

Nº da Cápsula	N°	T18	T21	T25	
Peso Solo Húmido + Cápsula (P0)	gr	70,00	66,16	58,23	
Peso Solo Seco + Cápsula (P1)	gr	55,64	57,65	54,69	
Peso da Cápsula (P2)	gr	26,68	27,90	41,83	
Peso da Água P3 = (P0) - (P1)	gr	8,65	8,51	3.54	
Peso do Solo Seco P4 = (P1) - (P2)	gr	28,96	29,75	12,86	
Teor de Húmidade W = P3 / P4 x 100	gr	29,9	28,6	27,5	
N° de Pancadas	Nº	10	25	37	

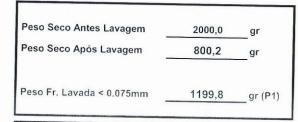
Teor de Humidade %

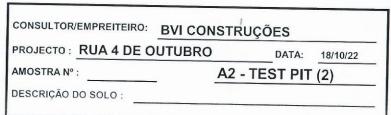
	2. DE1	ERMINAÇ	ÃO DO LIMITE DE	PLASTICIDADE
Nº da Cápsula	Ν°	M19	M14	
Peso do Solo Húmido + Cápsula (P0)	gr	41,06	42,53	
Peso Solo Seco + Cápsula (P1)	gr	39,02	40,27	
Peso da Cápsula (P2)	gr	28,12	27,96	
Peso da Água P3 = (P0) - (P1)	gr	2,04	2,26	
Peso do Solo Seco P4 = (P1) - (P2)	gr	10,90	12,31	
Teor de Húmidade W = P3 / P4 x 100	gr	18,7	18,4	

3. DETERMINAÇÃO	DO LIMIT	E DE RET	RAÇÃO	1000-00
N° do Moulde	N°	16	L20	
Comprimento do Moulde (L1)	mm	150,00	150,00	
Distância Retraída (L2)	mm	8,00	7,00	
Retração Linear L.S. = (L2) / (L1) x 100	%	5,3	4,7	

4. RESUMO RESU	JLTADOS	
Limite de Liquidez	28,6	%
Limite Plasticidade	18,5	%
Indice Plasticidade	10,1	%
Limite Retração	5,0	%

ANE-DEL-DE NIASSA GRANULOMETRIA


LABORATÒRIO PROV. DE SOLOS NIASSA


Cascalho:	10,7	%
Areia Grossa:	15,7	%
Areia Média:	5,3	%
Areia Fina:	8,1	%
Elem. < 0.075 mm	60,2	%


Módulo	Granulomet. G.N	1. =	0,80

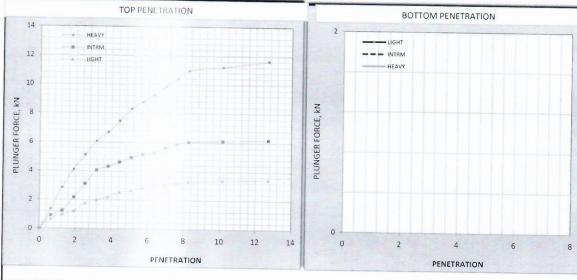
Penneiro mm	Peso Retido	% Retida	% Passada
75.0			
50.0			
37.5			
25.0			
19.0			
13.2			
9.5			100,0
6.7	7,8	0,4	99,6
4.75	22,4	1,1	98,5
2.00	184,2	9,2	89,3
1.18	168,0	8,4	80,9
0.600	146,0	7,3	73,6
0.425	57,4	2,9	70,7
0.300	48,8	2,4	68,3
0.150	132,8	6,6	61,6
0.075	29,4	1,5	60,2
Base (P2)	3,4	Hillin	
(P1)	1199,8		
< 0.075	1203,2	60,2	
P.Total	2000,0		

Peso Total Pass. 0.075mm = (P1)+(P2)

Projecto: PAV. RUA 4 DE OUTUBRO A3 CURVA - TEST PIT (2)

Ref. No.		Location		MUNICÍPIO DE MARRUPA		Borehol	Borehole/Pit No.		Hole-1				
Sampling Date	10/Oct/22	Casting	Date	27-Oct	-2022	Penetra	tion Date	31/0	ct/22	Depth			
Description	(CBR S	SATUR	ADO		Soaking	g Period	4 d		proving		1	
Water to be added	2178 m	1			Tan	k No.		1		ring factr Layer			
Present MC, % Av	erage MC %	Target	OMC, %	Targe	t OMC - MC	(%)		Mass of soil,	a	MDD		Water	
0,5 0,5	0,5		12,6		12,1		1	18000	9	Ka/m3			
Compaction Method:TN	H1 Method A	\8:55×3; 2:	5×5: 55×5 ble	ows	Hamn	ner No.	В	Balanc	o No	1785	-	2178 ml	
			intent befor					Dalanc	e 140.	2	Base No.	- 01	В
		1	GHT	INTR	M	HEA	WY	7	Hyg	ro. Moistu	re conten	(%)	
Container No.		C15	C15	C8	C8	C23		-		T			
Mass of container, g		107.6	107,6				C23		C10	C10	C3	C3	
Mass of wet soil +contai	ner d			108,2	108,2	106,8	106,8		107,6	107,6	106,6	106,6	
Mass of dry soil +contain		638,0	638,0	661,8	661,8	659,5	659,5		782,8	782,8	761,6	761,6	
	ner, g	578.5	578,5	599,8	599,8	597,8	597,8		779.4	779,4	758,4	758,4	1
Moisture content		12,6	12,6	12,6	12,6	12,6	12,6		0,5	0,5	0,5	0,5	
Avergae moisture conte	nt		2,6	12,0	5	12	,6		(0,5	0,	5	
		T	y Determin		,				SWE	LL DETER	MINATION	ı	
Mould No.			SHT	INTR		HEA					LIGHT	INTRM.	HEAV
/olume of mould			310	M7		M2		Initial Dial G	-	0	19,00	14,00	10,0
Mass of mould			757	230° 473°		230		Final Dial Ga		ng	23.00	16,80	12,5
Mass of mould + Soil		117.	241	9496		472		Difference (s			4,00	2,8	2
Mass of soil		-	184	4759		979		Percentage	Swell		3,15	2,20	1,9
Dry Density 1723		1832		5064 1948		Accepted LIGHT INTE		***************************************					
arget Density		1785		1785		1785		LIGHT		INTR	RM. HEA		AVY
6 Compaction		96.5 102.6			109,1		1		10	10 1:		2	
TESTING													
			Dial Gau	ge Reading					Fai	uivalent For	ce in kN		
Penetration (mm)	Тор	Bottom	Тор	Bottom	Тор	Bottom		Top	Bottom	Тор	Bottom	Тор	Bottom
V SSAMOSSES	LIG	HT	INTE	RM.	HEA	VY		LIGH		INTR	-	HEA	
0,000	0		0		0			0,00		0,00		0.00	
0,635	0		0		0			0,08		0,32		0.36	
1,270	0		1		1			0,10		0,60		0,74	
1,905 2,540	0		1		1			0,14		0,94		1,14	
3,175	0		1		2			0,16		1,28		1,62	
	0		1		2			0,18		1,48		1,94	
3.810	0		2		2			0,20		1,66		2,20	
3,810 4.445	U		2		2			0,24		1,88		2,44	
4,445	0		4		3			0,26		2,02		2,72	-
4,445 5,080	0		2	- 1	3			0,30		2,12		2,94	
4,445	0 0		2		3	- 1		0,36		2,26		3,18	
4,445 5,080 5,715	0		2		3								
4,445 5,080 5,715 6,350	0				3			0,40		2,40		3,34	
4,445 5,080 5,715 6,350 6,985	0 0		2		3 4			0,40 0,44		2,40 2,48		3,52	
4,445 5,080 5,715 6,350 6,985 7,620	0 0 0		2 2 2		3			0,40 0,44 0,50		2,40 2,48 2,62		3,52 3,72	
4,445 5,080 5,715 6,350 6,985 7,620 8,255	0 0 0 0		2 2 2 3		3 4 4			0,40 0,44 0,50 0,54		2,40 2,48 2,62 2,74		3,52 3,72 3,80	
4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160	0 0 0 0 1 1		2 2 2 3 3		3 4 4 4			0,40 0,44 0,50		2,40 2,48 2,62		3,52 3,72	
4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	0 0 0 0 1 1	CBR at 2.	2 2 2 3 3	ation	3 4 4 4			0,40 0,44 0,50 0,54 0,60		2,40 2,48 2,62 2,74 2,80		3,52 3,72 3,80 4,08	
4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	0 0 0 0 1 1		2 2 2 3 3 3 3		3 4 4 4			0,40 0,44 0,50 0,54 0,60	0	2,40 2,48 2,62 2,74 2,80	0	3,52 3,72 3,80 4,08	0
4,445 5,080 5,715 6,350 6,985 7,620 8,255 10,160 12,700	0 0 0 0 1 1		2 2 3 3 3 3 0 mm penetr		3 4 4 4			0,40 0,44 0,50 0,54 0,60	0	2,40 2,48 2,62 2,74 2,80	0 0	3,52 3,72 3,80 4,08	0

A3 CURVA - TEST PIT (2)


0

CBR TEST
REF TEST METHOD: AASHTO T193/TMH1 A8

Ref. No.

0

CBR CALCULATIONS FROM THREE POINT CBR CHART

	LIGHT	INTRM.	HEAVY
DRY DENSITY	1723	1832	1948
CBR	1	10	12

	DD	CBR
AT 90 % MDD	1607	13
AT 93 % MDD	1660	15
AT 95% MDD	1696	20
AT 98% MDD	1749	30

Operator Checked by:
Technician:
Date
Date
Operator
Definition:
Date