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Every valley shall be exalted, and every mountain and hill

shall be made low: and the crooked shall be made straight,

and the rough places plain.
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Abstract

The preseni work deals with an investinent model where the investment op-
portunities are randoni.

We have initially A units of a resource (capital or fertilizer or energy, etc)
available for investiment. At certain times v = 0,1,..., N — 1 an opportunity
to invest will occur with probability p. As soon as an opportunity arises, we
must decide how much of our available resource to invest.

If we invest «, then we obtain the profit «(ae). the amount @ then becomes
unavailable for further investment, ‘

If no investment opportunity arises, we obtain ¢ (if ¢ > 0) or must pay —e
(if € < 0), e.g. as the management cost per time unil.

The problem is to decide how much to invest at each opportunity so as to
maximize the total expected profit over the N Lime periods. N is called the
horizon. This model has been investigated (with ¢ =0, 8 =1 and V5 = 0) by
Derman/Lieberman/Ross (1975), cited as D/L/R.

The resource may be measured in discrete units or in real numbers. In
another model (called the "continuous-time case™ by D/L/R) the investment
opportunities arise al random times, namely according Lo a renewal process.

We now give a survey on the contents ol the present work.

To introduce the reader in this licld ol inathematics we present in detail in
the first chapter, what is dynamic programming and its intuitive background.
Also we talk about the advantages of the use ol {personal) computer in dynamic
programming. The use of PC’s played also an important role in the present
work. We wrote numerous programs in TURBO-PASCAL VERSION 6.0 (cf.
Appendix C) for illustration and control of theoretical results and for finding
conjectures about the struciure of the solution.

In the second chiapter we collect some auxiliary results from mathematics
and dynamic prograniming, without prools. The purpose of this exposition is
to be helpful in the main proofs. '

Mainly the proofs usc the induction principle, combined with the value




iteration.

We begin Chapter 3 with the discrete-time discrete-state case, where we
present two models, one wihich is the model ol D/L/R, (for the continuous
state case), and another oue which seeius to he simpler. In Theorem 3.1 we
present the basic solution procedure (value iteration and optimality criterion)
for our model.

In Theorem 3.3 we show how both models are related. We also prove that
our model and the model ol D/L/R lead to the same result, ¢f. Lemma 3.1.

Afterwards we discuss structure properties of the value functions and of
the optimal policy. The Theorems 3.4 and 3.5 show that two natural expecta-
tions in an investment process are fullilled: (a) it is natural to expect that "if
we invest more, we get more,” (b) it is natural to expect that with increasing
horizon we shall have increasing returns, The structure properties about con-
cavity, convexilty and monotonicity of the value functions and of the optimal
policy are presented later in the continuous-state yversion.

I'he treatment of the last three cases uses only the first model.

For the discrete-time continuous-state version the respective model is des-
cribed, and again the structure properties are discussed as in the case before,
cf. Theorems 3.7, 3.8, 3.9, and 3.10.

If « and ¥, (terminal reward) are convex it is shown that if an opportunity
presents itsell we must invest all which we have at hand or nothing, and that
Vo is convex. ln the next Theorem, 3.10, it is shown that il « and V; are
concave, in general there is not an explicit solution of the optimal policy but
Vo is concave, In Theorem 3.11 the continnity of ¥, in (s, p) is proved.

Case p = | is the classical case, where always an opportunity occurs. If
p— 1, then V, (s, p) — V,(s, 1), this is a consequence of Theorem 3.11.

D/L/R give bounds of the value functions (Proposition 4). In Theorem
3.12 we give another bound for V.

While Theorem 3.10 does not yield the explicit solution of the optimal
policy and the value functions, a special case where the optimal policy and the
value functions can be completely specificd s when w(a) = ¢, for 0 < a < 1
and Vp(s) = dy - s + ey, fov some dy € Ry and lor some ey € R (Example 1).
Of particular interest is the case o = 0.5 (Example 3).

Another special case is when v{a) = Ina and Vy(s) = dy-In s+ eg, for some
do € RY, and for some ey € R (Example 2).

in all these examples we discuss the monotonicity and the convergence of
the sequences (d,) and (e,).

In the renewal process case with discrete or continuous states we present
the respective models anc we discuss some results in D/L/R. We also prove
some structural properties and state some conjectures we oblained from our
program, for the case the times between opportunities have a geometric dis-
tribution (the discrete comnterpart ol Poisson process). The model for the




renewal process case needs a two-dimensional state space.

Some of the previouns results, e.g. closed solutions and structure properties,
remain true even when the probability of an opportunity, the management
cost, the utility function and the discounting change {rom period to period.
In this non-stationary case we present the model {or the discrete-time discrete
and continuous-state. As belore we present closed solutions for two special
cases (Iixamples 1 and 2) and the convergence and the monotonicity of the
sequences (d, ) and (e,).

In a discussion of the reduction of problems from mathematical formulation
to computer code, we explain with more details a flow chart for a general
allocation process and a self-explanatory (low chart (cf. Appendix B) is used.

In the first appendix the notation used throughout the work is presented.

The new results in the present work concern the following topics:

(1) More realistic modelling by inclusion of a fixed cost ¢, and using
an arbitrary Tunction ¥y and an arbitrary j.
(i1) Use of simpler model than in }/L/R.

(1) Continuity of Vi, in (s.p), in particular il p = 1 = Vy(s,p) —
Vi(s, 1).

¢

) Convergence and monotonicity of the sequences {d,) and (e,).

} Modelling the renewal case with geometrically distributed ti-

{iv

(v) Modelling the problem for the non-stationary case.
(vi

;

nes belween opportunities.
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Chapter 1

Introduction

1.1 Dynamic Programming

Dynamic Programiming (DP) is a mathematical technique which is useful in
many types of sequential decision problems.

What 1s dynamic programming 7

We will attempt to answer this question throughout this introduction.

Everybody can fill in with more details the lollowing questions and can
make some kind ol answers to them. What is the best way lo travel from
where you live to where you work 7 Or what is the best route to follow when
vou travel from liome to any city 7 Or what is the best itinerary for a vehicle
that delivers food from a supplier to some shop 7

It is obvious that to answer such questions cveryvone will have difficulties,
because: (1) the questions have not defined what is the meaning of "best”, and
(2) the questions do not tell what should he the form of the answer and how
much details are needed. "Best”™ may have several meanings: least distance,
least, time, least cost, and usually this must be achteved under constraints.

We see thal independently of the observations mentioned above, for ans-
wering those questions we must take decisions sequentially, Often, in order to
achieve an objective, the decision process involves several decisions to be taken
at different times. The mathematical teclhinique of solving such a sequence of
inter-related decision problems over a period ol time is called dynamic pro-
granuming.

Dynamic programming is a way ol solving decision problems by finding an
optimal strategy.

Dynamic programming uses recursion 1o solve complex problems, which
can be subdivided into a series of sub-problems. The word dynamic is used
because time is explicitly taken into consideration.

Dynamic programming differs [rom many ol the techiiques of Operations
Research in that there is no universal algorithm which can be applied to all




problems.
In dynamic programining there are deterministic and stochastic models.
We now explain the deterministic model.

1.1.1 Deterministic Dynamic Programming Features

What are the characteristics of a deterministic DP problem ?

The principal objective of dynamic programming is to maximize {or mini-
mize) a function of N variables and ol a sequential structure subject to one
or more coustraints of a sequential structurc. The number N is called the
horizon.

We are now presenting in details the intuitive background for the N-stage
deterministic dynamic programming problem D2y (sq) with initial state sq; cf.
Figure 1.1.

ag € D(sy}) ) € IJ(s| an_y € Psp

SN, N1

Figure 1.1. Development of stites s, and actions a,,.

The function to be maximized is delined as I'ollowﬂ Consider a system
which starts al time v = 0 in some point s of a set S, We call sy the initial
state and S the stale space . In the general theory, S is an arbitrary set. In
our work 5 is either one-dimensional or two-dimensional (in Sections 3.3.4 and
3.3.5). The system moves at times v = 1,2,..., N to states s;,...,5y under
the influence of actions ag, ay,...,ax_,, taken [rom a set A, called the action
space.

The interval between times v and v 4 1 is called #-th period and "at stage
n” means “at time v = N — n”. When the system reaches state s, the next
action is chosen from a set D(s) C A, the seb of admissible aclions for state
s;and D= {(s,a) € S x A« € 1s)} is called the consiraint sel. For the
transition from one state to the next one we use the function T : D — S,
the so-called transition function. 'I'his mecans the following: if at time v the
system is in state s, and action «, € D{s,) is taken, then the system moves to
the next state s, := T'(s5,,0,). At vime v a one-slage reward v(s,,a,) € R
is obtained (negative rewards arc costs.)

Moreover, if the movement of the system ends al time N in state sy, then a
terminal :'cwmd Volsa) occurs. Fhe same monetary units, obtained at different
times, will have different cash value due Lo interest and /or devaluation. Thus




we must take into consideration a so-called discount factor 3 € RY. This
means: the reward »(s,, a,) obtained at time v and the terminal reward Vo(sy)
at time &V enter the balance relative to time v = (tas 8*1(s,,a,) and BV Vy(sy),
respectively. In most applications carly rewards are profitable which means
g <1

For each state so € .5 and cach (admissible) action sequence y = ()1,
we have to maximize the following {function:

N—1

y— Vy(so) = D B r{se, ) + BN Volsw).
=

These sub-problems are then solved scequentially until the original problem
is finally solved.
The N-stage value [unction Yy @ § — (—oc, 400] is defined by

Viv(s) 1= sup{Vn,{s0) 1y € z‘-‘N(S)}.

The basic Theorem of deterministic DP (¢l Theorem 2.6) says, that the value
functions can be computed recursively by the so-called vafue iteration

Va(s) = sup {r{s.a)+ 8- Vo (T(s,a))}, s € 5 nelN.
ael(s)

A — . r P - . .
A sequence y* = (a3} "' of N decisions which achieve the optimum of the

system, starting in sg, 15 called an sg-optimal aclion sequence.

A decision rule is a mapping s — [(s) such ihat f(s) € D(s) for all s.
An N-stage policyis a sequence 7 = (fv. fa—1. ..., fi) of decision rules where
fi 1s used at stage &, which means L periods belore the end of the decision
process. [7{s) is the set of "optimal actions™ at stage i in stale s, i.e. the set
ol maximum points of « = r(s,a) + 8V, (15, a)).

A mazimizer at stage n is a decision rule f, such that fu(s) € D (s) for all
s. The set of all decision rules is denoted by F, hence, ¥ is the set of N-stage
policies.

1.1.2 Stochastic Dynamic Programming Features

From the many models ol stochastic dynamic programming we only need the so
called control models with indepeadent (not necessary identically distributed)
disturbances. For the moment assume thal the disturbances are also identically
distributed.

The case of an N-stage stochastic model DFPy is the one where the tran-
sition from s, Lo 5,41 (where 5 € S is the stafe and S is the state space)
is specifted by a transition function 7" wlich is "disturbed” by some random
variable X4, taking in our applications values i a finife sel, the disturbance




space M, and where the variables X, Xy. -+, Xy are i.1.d. {independent and
identically distributed.) We put X := X|.

As in the deterministic model, the intuilive background for such a model
can be explained in details with a figure: cl. Figure 1.2.

ap € D(sp) «y € D(sy)  ay_y € D{sy-1)
N

S% t

"‘(SO: ("’U) ‘"(I'h‘leul ) "'(I'S.'\"—Ia(fj\"—l ) l/O(SN)

Figure 1.2. Development of states s, and actions a,, “disturbed™ by X,4,.

The transition law for the stochiastic model has the following intuitive mea-
ning: if at time » we are in state s, and take action a, [rom the set D{s,) C A,
the sel of admissible aclions al slaie s,, then the system moves to the new
random state s,,.; 1= Fs,,a,, Nup); 0 < v < N~ 1. Thus 7" is defined on
D x M. :

If at time », we are in state s,, take the action «, and il the disturbance
Z,41 occurs, then we obtain the reward (s, a,, 2,4} The one-stage reward
is the expecied value ol £, e r(s,¢) = [5(s,a, X).

The notions of decision rule. N-stage policy, maximizer al stage n, F and
FN are defined exactly as in the deterministic case,

-1

e -, . R 4
For each initial state sy € 5 and cach aciion policy = = (rp,,)g , we have

the N-stage random reward

N=1

Ruvalso) 1= 3 B9 (6w wul &) Nowt) + BN Vil€w)-

vl
Here the state random variables £, ave geonerated by & = s, 7 and T as
5 3 :
£U+l = T‘(Eusﬁpu(gu)e- "U+E)? 0 S 4 S j\’ - 1

Moreover, the expected N-stage reward for initial state s and policy 7 is
defined by the real number

V() i= Ry q(s).
CO;']sequ(;‘n[‘.]y the :'\f_sl,a.gc value lunction 1/;\, - (-—OO, +OO] is defined by

CVa(s) = sup Vao(s),
a€ (s}




which is the maximal expected N-stage reward for initial state s over the set
FV of all N-stage policies. We will show in Chapter 2, Theorem 2.6, that Vy
can be computed recursively by the so-called value iteration

Vils) = sup {r(s,a)+ - LV (s, ¢, X))}, s € 8,nelN.
a€D{s) )

Dy (s) 1s now the set of maximum points of

@ = Wils,a) = 1{s,a) + 8- EV_ (s, a, X))

1.1.3 The Inverse Principle of Optimality

In the literature very often the basic solution procedure of DP is said to be
valid because of the lollowing Principle of Optinality (Bellman and Dreyfus
(1962), p. 15) which can be stated as follows:

- . . . L . .
(a) (Deterministic problem) H the sequence (@, )5 ™" is sg-optimal
. e . r_1 .
for the N-stage problem and it s := T'(sp, ag), then (a,,)’l\ Uis

sy-optimal for the (N — | )-stage problem.

(h) (Stochastic problem) Il the policy ([,a) € F' x FN71 is s¢-
optimal lor the N-stage problem and il sy := T'{sp, f(s0)), then &
is sj-optimal for the (A — 1)-stage problem.

The principle tells us that having chosen some initial sy and ag, we do not
examine all policies mvolving thal particular choice of sg and @g, but rather
only those policies which are optimal for the N — 1 stage problem, resulting
from (sg, @o).

However, the principle ol optimality is only a necessary condition for an
N-stage optimal policy and hence ol little use. On the other hand, the fol-
lowing fnwverse Principle of Optomalily (Hinderer (1993), supplement 11.2.2)
is a sufficient condition. It is in fact equivalent to the sufficiency part of the
Optimality Criterion, and hence much more useful than the Principle of
Optimality. .

Inverse Principle of Optimality:

o™ Is an optimal initial action lor 2Py at state sy (le. if a

I pi I initial act [or £y at state s far e
- Nel - . . .

D3 (s0)) and il (@) ™" is an sj-optimal action sequence lor DPy_y,

where s; 1= T(sq. ag), then (X)) ™" is sp-optimal for DPy.

Based on this inverse principle of optimality. the solution begins by a one-

stage problem and adds sequentially a serics of one-stage problems that are
solved until the overall optimum of the initial problem is obtained. The solu-
tion procedure is based on a backward process and a forward process.




In the first process, the problem of computing V,(s) and maximizers s —
Ja(s) 1s solved by solving the problem for the last stage and working back-
wards towards the first stage, making optimal decisions at each stage of the
problem. And in the second process, the problem ol computing an sg-optimal
action sequence (a::){)v_1 is solved by computing, using the maximizers from
the backward process, recursively the actions «.

The essential advantage of dynantic programming is that it transforms one
(parametric) problem in N variables into N (parametric) problems, each in

one variable.

1.2 General Reflections on the Use of (Per-
sonal) Computers in Dynamic Program-
ming

Meanwhile, despite its theoretical and practical appeal, dynamic programming
has not evolved into a standard methodology, primarily due to the lack of soft-
ware specifically designed 1o support this technique and to the great diversity
of problems.

While dynamic programming is a frequently used method in theoretical
studies, il 1s so far among the main methods of Operations Research probably
the least used methodology in computational and application eflorts.

On the other hand, in mmany cases there do not exist soluiion methods
other than DP, and then it is important 1o make as much as possible use
of the structuwre of the solution in order Lo make dynamic programming a
computationally efficient methodology.

1.2.1 Usage of (Personal) Computers in Dynamic Pro-
gramming

The maximal expected reward V,{s) for the n-stage model with initial state s
can be computed recursively by the value iteration VI {(or DP algorithm):(cf.
Chapter 2) )
Vi(s) = max {r(s,a}+ - LV (T(5.a, X))}
u€(s)
We use this VI for the stochastic model and also lor the deterministic case.
The latter is obtained when [A/| = 1.
Obviously the solution of an N-stage Dy problems consists of two parts:

1. the sequence of value lunctions = — V,(s).n € IN, or at least Vy;




2. a sequence of maximizers [, at stage e, | < < N (or more generally
the sequence of sets 17(s) of oplimal actions at stage n in the state s.)

We see that the recursive nature of VN1 lends itsell casity to the implemention
on computers. However, it is quickly realized that many problems of realistic
size require huge memory and/or execution time. On the other hand, the
VI can be accelerated if @ — W, (s,¢) is convex (bang-bang maximizers) or
concave, also il there exist monotone maximizers or maximizers of other simple
structure.

The correctness of computer code for the DP can be controlled by theoreti-
cally obtained structural results. Also il is uselul to retain structural properties
when aggregation methods are used for approximate computations.

1.2.2 Advantages Due to the Use of Computer in Dy-
namic Programining

In general a DP problem has not an explicit solution. As far as band com-
putation is concerned, time and accuracy considerations usually rule out this
method. .

Once a digital computer with its enormous speed is available, numerical
methods are important and assuine a certain feasibility.

Computers are very important in particular because their graphic display
of results helps to investigate the structural [eatures ol the solution, e.g. mono-
tonocity, convexity, concavily, and so on. The structural properties comprise
the following:

1. monotonicity of V,(s) in n and/for s;
concavity or convexity of s — V) (s) and/or a« = W, (s, a);
monotonicily and/or Lipschitz-continuity of s — [,{s):

sensitivity analysis, f.e. the influence of cost parameters or transition
faw parameters;

form of D7 (s);

cexistence of limits of V,(s) and f,(3) (s — oo, n — oo);

. guess lor speed of convergence, asymptolics;
support for finding a closed solution of [, and/or V,,;

. generation of counterexamples;




10. properties of "sufficiently™ lie approximate models ollen carry over to
continuous models, but not. vice versa.

The support consists olten in discovering, enhancing or disproving conjec-

tures. )

Numbers stored in the computer’s memory are usually to ten or more
significant decimal figures, depending upon what is desired. Consequently,
there is feasibility and reliabitity to compare two values.

.




Chapter 2

Mathematics and Dynamic
Programming Foundations -

Throughout this chapter, we shall present some auxiliary results from mathe-
matics and dynamic programming, without prools. The justification of these .
Theorems, Lemmas, ete, can be found in the books ol Hinderer, K., (1993),
Roberts, A. W. and D. [£. Varberg, (1973), and other books referenced in the
bibhiography,

2.1 Mathematical Background

2.1.1 Convex and Concave Functions

We assume that our lunctions § : [ — I} are defined on some interval [ of the
real line R.

Definition 2.1 A function [ : 1 — IR is called convex if
JIA a4+ (L= -y <A fle)+ (0= A) - fy) (2.1)

forall x,y € I and X in the open interval {0.1). {One could equivalently take .
M do be in the closed interval [0,1].)

The function [ is called strictly convex provided that the inequality (2.1)
is strict for & # y.

Definition 2.2 A funclion [ — R is called concave if
S et (= A) ] > A S+ (= A) - J()

Jorall x,y € I and X in the open intereal (0, 1).

13




Also, [ is called strictly concave provided that the inequality (2.2) is
strict for » # y.

Observe that — [ is convex, ifl [ is concave. Therelore any result on
convex functions yields immediately a "dual” resull for concave functions, and
vice versa.

Obviously a linear function x — ¢ - + d Is convex and concave.

Theorem 2.1 [f f: 1 - R and g: { — R are convex and o > 0, then f+g¢g
and o - [ are conver.

Of course, it is also true that the sum of concave lunctions is a concave
function and the product of a concave function with a non-negative number is
a concave function. Moreover, any finite sum of convex [concave] functions is
convex [concave].

Theorem 2.2 If [ : ] = R und g: 1 — IR are both non-negative, decreasing
[increasing]. and convex, then 2 — hiw) = f(x) - g(x) also exhibils these three
properties.

Theorem 2.3 lLet [, : [ — R, o € 3. be an wrbitrary family of convez
functions and lel f{z) = sup fo(2). IfJ = {2 €[ f(a) < oo} is non-empty,

a
then J is an interval and [ is convex on J.

In particular, the supremum of a family of linear [unctions is convex. Si-
milarly if f, is concave for all a € 3, then [f(x) = f f,(x) is concave on
O

{xel:f(z)> —o0).

Theorem 2.4 If D is conver and if D(s) iz bounded for all s, and if W :
D — R is concave, then s — W(s) = sup Wi(s, a) is concave.
n€1X{s)

The results about maxima and minima of convex and concave functions
illustrate why convex and concave [unctions are specially interesting in the
theory of dynamic programming.

Theorem 2.5 /f [ : | — R is conver. then any relative minimum of f in I
15 also o global minimum of | over I

More informations on the maximum or minimum of convex or concave
funclions arc as {ollows;

Lemma 2.1 [f [ : [a,0] = R is convew. then il allains ils mavimum at the
point a or al the point b.

.




Theorem 2.6 /f [ : 1 — IR is concave, then any relative mazimum of [ in I
is @lso a global maximum of [ over 1.

Lemma 2.2 If [ : [e,b] — W is concarve, then i allains ils minimum at the
point a or al the poinl b,

Lemma 2.3 If [ : ] — R is stviclly convex [strictly concave], it has al most
one mintmum [imazimum] poind.

Lemma 2.4 [fv is concaue on an interval 1 C R, then @ — v(v + h) - v(z)
is decreasing for all h > 0.

2.1.2 Other results from Mathematics

Lemma 2.5 (Linear first order difference equation) Ifthe sequence (b,)
of real numbers salizfies

by <[2] ¢4+ a- by, n € IN,
for some real ¢ and «, then
by £[2] ¢ oula)+a” by, n € N,

where
Tl |

| ae IR —{1}.
onl) = Z.‘l:" =< ._‘ : . :f f { }
v=0U ’

2.2 © Dynamic Programming Background

2.2.1 Stationary Control Model

Definition 2.3 A (stationary) N-stage control model (CM) with finite di-
sturbance space and iid. disturbance variables X,.1 < v < N, is a tupel (S,
A DT, M, p, v, V. 8) of the following Lind:

(i) S is a won-emply wrbilvary sci. the state space.

(i) A is @ non-emply arbilrary sci. lhe action space.

(iii) D is a subset of S x A such that all s-seclions D(s) 1= {a € A :
(s,a) € D} of D are non-cmpty. D is called the constraint set and D(s) is
cafled the set of admissible actions for siale s.

(iv) T is a apping from [} inlo S, the transition function.

(v) M is a non-emply finite sel, the disturbance space.

(vi} p is the discrete density of the disturbance random variables.

(vit) v is a finile function on D, the (one-stage) reward function.

(viti) Vy is a finite function on S, the terminal reward function.

(ix) B is a veal posilive number, the discount factor.
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Theorem 2.7 (Basic Theorem) (a) The value funclions V,, satisfy the fol-
lowing recursion, culled value iteration (V1):

Val(s) = sup {r(s,a)+ H- Voo (T'{s,a, X))
u€l(s)

(b) The following Optimality Criterion (OC) holds: if f,(s} is a ma-
rimum point of « — Wo(s,a) :=v(s, )+ - LV, (F(s,a,X)) forall s € §
and | < n < N, then the policy (fn)y is oplimal for DPy.

In 2.6 and in the following we put X := X;. As the random variables X,
are discrete, the VI reads, if p(a) := P(X = a),

Vi(s) = sup {r(s,a)+ 3 Z Vit (F'(s,0,2)) - p(2)}.

a€(s) neA

In case A C IR we say that D has odlereal form il

D(s) = [dy(s),dy(s)), s €8,

for two functions d, and d, > d, from S into A.

Theorem 2.8 Assume
(a) S is an inderval in IR, A C .
(b} D has interval Jorm for continuous functions dy and dy.
_ (s,a) = T'(s,a.x) is continvous for all € M,
1 bp—s
(d) r and Vo are bounded and continuous.
Then
(1) Vi, is continuous and bounded Jor all n € IN.
(ii) For ench stage n there exisis a smallest flurgest] mazimizer gn [hy).

Lemma 2.6 {fs — [(s) s increasing and s — W(s, a) is increasing for all

a, then s — sup {W(s,a)} is increasing.
aE D5}

Theorem 2.9 If Viy > Vi for some bk € INg. tlien n — V,(s) is increasing
forall s €S and forn > k.

For e € A the set D, := {s € 5 :(s.a) € D} is called the a-section of the
constraint set 2. As an example, if § = 4 = R, and D(s) = [0, ] for all
s, then D, = [a,+00). In general. D, may be cmpty lor some a. If W is a
function on D, the function s — W (s, a) is defined on D,, provided that D,
1s noun-empty. A property of 5 — W (s o) “lor all ¢ 1s to be understood as
"for all @ € A” such that D, # 0.




Theorem 2.10 Assume S C R. Then s — V,(s) is increasing for alln € IN,
if

(a) D(-) is increasing, t.c. 5 < s dmplies D(s) C D(s').

(b) s = T(s,a,x) is incrensing on D, Jor all « and all x € M,

(¢) s = r(s,a) is increasing, and

(d) Vo is increasing.

Remark
21. I A C R and if D has interval form, then D{-) is increasing, 1f ds 1s
imcreasing and d; is decreasing.

Definition 2.4 W has increasing differences iff s — W(s,a') — W(s,a) is
increasing on {s € D : (s,a) € D,(s,d') € D}, for el a L &'

Theorem 2.11 (Serfozo’s criterion) dssume § C R, A C R, D has in-
terval form with increasing d, and dy and thal W : [) — R has increasing
differences. If W{(s,) has a smallest flargest] maziniam point g(s) [h(s)], then
g is tncreasing [h is increasing).

Lemma 2.7 Assume S C R, A = R and D{s) := [0,d(s)] for a continuous
function d from 8 info R. If W : D — IR is conlinnous and bounded, then

s — W (s) = max W(s, a)
ULu<d(s)

¢ conlin nous,

2.2.2 Non-Stationary Control Model

Definition 2.5 4 (non-stationary) N-stage conlvol model (CM) with finite -
disturbance space and indepc'm."(:n!. disturbance variables X, (s a sequence of
tupels (S,, Ay, Dy, Too My, ppovy, Gi) < n N, and Sy and Vo of the
following kind: .

(1) Spy Any Dy T s My ra, Vo, By hawe the same meaning and interpretation
~as in the stationary case, bul they depend on n, which denoles stage n.
(11) pu is the discrete density of (he disturbance random variable at stage

Note that the random variable &, := Na_,41, which is the disturbance at
stage n, has the discrete density p,.

Theorem 2.12 (Basic Theovem) (u) The value functions V,, satisfy the fol-
lowing recarsion, called value iteration (VI):




Vilsy = sup {r(s.a)+ 3, BV (T.(s.0,6))), s€5,1<n<AN.
a€ i, ()

(b} The following Optimality Criterion (OC) holds: if f.(s) i3 a mazi-
mum point of @ — Wo(s,a) :=ru(s,a)+ 8, BV, ({T.(s,a¢,&)) forall s € Sy,
and 1 £n < N, then the policy (f,)\ i3 oplimal for DPy.

Remark
2.2, The expectation also depends on i, as in each stage there may be different

discrete densities,

As the random variables X, are discrete, the V1 reads, if p, 1= P (X = z),

Vilsy = sup {r(s,a)+ .- Z Voo (s, a, ) - pala)].

HGDH(S) rent,




Chapter 3

A Sequential Allocation Model
with random opportunities

3.1 Allocation Problems

Problems of allocation arise whenever we can use a resource in a way to obtain
a maximuam possible profit. Supposc that there is available a certain quantity
of an economic resource. This may vepresent. money, machines, water for
agricultural and industrial purposes or lfor hydroelectric power, fuel for a ship
or plane, and so on. This resource can be used in dillerent ways, using all or
part ol i1t in any way a certain return is derived. The fundamental problem is
that of dividing at certain times the available resource so as to maximize the
sum of returns. Another (non-temporal) interpretation is the allocation (at
one time) to different activitics.

3.2 A Stochastic Sequential Allocation Mo-
del

Sequential allocation problems ave standard examples in Dynamic Program-
ming.

The present work deals with a model where the investment opportunities
are random.

This model has been introduced by Deiman/Lieberman/Ross (1975), cited
as D/L/R. The present work contains thie compleie proofs of main results of
D/L/R (lor a slightly more general modct) and of some new results, new
examples and numerous computations.

We have initially N units ol capital available lor investment. At times
v o=
The opportunities are assumed to be stochastically independent. As soon as
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an oppoﬂuml\' artses, we must decide how much of our available resource to'

invest.

If we invest a, then we obtain an (expected) profit u{«), the amount ¢ then
becomes unavailable lor investiment.

If no investment opportunity arises, we obtain ¢ {il ¢ 2 0) or must pay
—c (if ¢ < 0), e.g. as management costs. We assume that these costs also
arise after the resource s, hecomes zero. A more realistic model would assume
that no costs arise when s, becomes zevo. Butl then the analysis of the model
would become much more dillicult. Morcover, in some cases, e.g. in Examples
of Ina, «® (il dg > 0), and hy - Ja+hy- /s —a+hs- /5 (if dg > 0), one never
reaches s, = 0, and then our model is completely realistic.

Il after N periods, sy ol the initial capital is left, we obtain a terminal
reward Vo(sy) 2 0. In reality one will often have ¥ < w.

The problem is to decide how much to invest at each opportunity so as to
maximize the total expected profit.

In order to facilitate the comparison with D/L/R, we give a translation
table for notations.

D/L/R | Qur notation
D K
N N
»
«

u(a)

s (Model 1), ¢ (Model 2)
y {conbinuous-tune)
.[‘l‘l('q)

V(%)

2V

{ {continuous-time)

Table 3.1. Translation of notation.
The resource may be measured:
. in discrete units (discrete stale case), or
2. in real nuinbers (conlinnous stale case).
The investment opportunities may arisc:
b at times v = 0,1, N (discrele Lime case). o

2. at random times 0 < 1) <1y < -+, e.g. according to a Poisson process
{renewal process case).




3.3 Stationary problems

Thus we shall treat four different cases.

3.3.1 The Discrete-Time Discrete-State Version

Here we present two dillerent formulations of the problem as CM's: one, that
corresponds in case ¢ = 0 to the approach in D/L/R (1975), p. 1121-1122,
(for the continuous state case), and a new one, which seems to be simpler. We
begin with the latter, called Model 1:

1s the stale space, where I is the maximal (initial) capital for investment, and
s, € 5 1s the remaining capital at time ».

A=

is the action space, where a, € A is the capital 1o invest at time v, in case an
opportunity arises at that time.

D{s) .

is the sel of admissible aclions al slule s.

D:i={(s,a)eSxArae D)} ={s,0) €S xA:0<a<s)

is the constraini sel.
The 1.1.d. disturbance random variables are

¥ 0, if no opportunity occurs al time w,
Apt1 b, if an opportunity occurs at time v, w=0,1,...,N = 1.

Therelore, the disturbance spaceis M = {0,1}. Put also p:= P(X, = 1),
qg:=1-p Weassume 0 < p < I

Note that p =1 corresponds to the classical case that always an opportu-
nity occurs.

T:DxM-—S
is the fransition function. given by

S =t W,y =1,

Sppr = (s, 0y, mppy) 1= { . i sy = 0
R Ty —

= &, =, Ty

.') I




wl{a). =1
e. a=0, celX.

the one-stage reward is
r(s,a) = Er(s,a, X)=p-fls,a, 1)+ ¢-7(5.¢,0) = p-u(a)+q-c

The terminal value function ¥y > 0 and the discount factor § > 0 are
arbitrary. .

A case where ¥ = 0 is realistic, is a company who promotes some project
and who requires that a resource remaining at time N must be returned. (Then
V, is the maximal expected utility for the project, not for the company.) In
some other processes unallocated resources will have a value, and this value
will be taken as ¥4(s).

We make the following assumplion:

- Vo 18 ncreasing,

This is a natural assumption as an increase in the terminal capital sy will
imply an increase of Vo(sy). On the other hand, w will not be increasing in
all applications. For example in the use of Tertilizers lor agricultural purpose.

Remark

3.1. D/R/L (1973) use ¢ = 0, V4 = 0 and F =1, but it is mentioned in Remark
{4), p. 1124, that (in the continuous stale case) the results remain true for
arbitrary #. In reality one will have ¥, # 0 as the remaining resource sy will
not be worthless. {Note also that by chance it may happen that not a single
investment opportunity arises during the time from v =0towv =N —1.) A
natural assumption may be Vo < .

Now let V,(s) denote the maximal expected n-stage reward, if the initial
capital is s and before it is known whether or not at time » = 0 an opportunity
arises. As the disturbance space M is finite, we obtain [rom Theorem 2.7 the
following result:

Theorem 3.1 (a) Vx may be computed recursively by the value iteration

Vi(s) Ggoc+B-q- Vo (8)+p- ax {u(a)+ - Vior(s —a)}
DSuxs
g-lc+ P -V (s)+p- nax {wals,0)}, (3.1)
where wy(s,0) = ula) + F- V2 (s~ a).
(b) (Optimality Critervion) If f,(s) s a marimnum point of a — wy(s,a)
Joralls€ 8 and 1 <n <N, then the policy ()5 is optimal for DPy. O

Let us now present Model 2:




In contrast to Model | we now indicate in the state s, whether or not an
opportunity occurs at time ». Thus our states ave s, = (£,,1,), where

) 10, if no opportunity occurs at time v,
P11, if an opportunity occurs at Lime v,

and {, is the available capital at time ».
Therefore, the stefe space is

S:={0,1} x INg 1,
where X is the maximal initial capital.
A:=1{0.1,.... A}
1s the action space, a, € A is l.hc-. capital 1o invest at time v, -
D(s)=Det)yi={aeA:0<a<t}
is the sel of admessible actions of slale s,

D:={{s;,a)eSxA:0<a<t}

is the constraint sel. Note that in case ¢ = 0 no action is required.
The i.i.d. disturbance random variables are

I, il an opportunity occurs at time v+ 1, »=0,1,...

. 0, il no opportunity occurs at iime v + 1,
Ay =

and M is as o Model 1.
e t,a.a) =

=(xd—a-

1s the Lransition function, and

r(z.l,a) =

1s the one-stage reward.

The terminal reward function is denoted by V. As it does not matter
for the terminal reward whether or not an opportunity occurs at time NV, we
define 'l‘f'[,(s,l.) = Vo (4), where Vi, 1s the terimmal reward function of Model 1.

As in Model 1 we assume that, \‘f'{, is increasing. Also g > 0.
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Now let ‘T’-,,(S,l'.) denote the maximal expected n-stage reward when the
initial capital is £ and when at time » = 0 no opportunity occurs (¢ = 0) or
an opportunily occurs (£ = 1).

Again we have a CM with finite disturbance space. Hence the following
counterpart to Theorem 3.1 holds:

Theorem 3.2 (a) Vi may be compuled recursively by the value iteration

Vile,t) = (1 =¢g)-e+ max{s-ula)+ 73 LV, (X t—a-g)}

<<t

max {H g, t,a)}. (3.2)

0<a

(b) (Optimality Criterion) If f,.(s) is a mawimum point of a — W.(e,t,a)

or all s = {c,8) € S and 1 < n < N, then the policy (fu)y is optimal for
N

DPy. : a

Using the abbreviations

ual(l) = V(1. 1),
o, (1) i= V(0. 1),

the value iteration has the lorm:

v,i(t)—{:g:ll(\t{u al+fopoa g —a)+ B g wai(t —a)}, ‘ (3.3)

wp(ty=c+ B p-oga () + 7 g wy- (). (3.4)

Note that w({) = e+ F - p-uglty+ 7 g we(l).
It 1s intuitively clear, that ¥, (s) and e,(s), w,(s) ave related as follows:

Theorem 3.3
Vi(s) = peug(s)+ g wa(s), n€INg. (3.5)

Proof. For n = 0 the equality is obvious because Vo(s} = vols) = we(s).
Now we assuime that the theorem holds [or v < &, for some & € INg. Then
for n = &+ 1, using (3.1} we have
Vigr(8) = qc+ 8- - Vi(s)+p- 32«1(\ {u(a)+ B Vi(s - a)}. (3.6)

On the other hand, we have

propm(S)+ g wpp(s) = pomax{u(a)+F-p-uls—a)+p-q-

U<ugs

(s ~a)} -+ Fq-{pove(s) +q-we(s))+q-c

2t




This may be written, using the induction assumption in (3.5) for n = k as
qg-c+ 8- q-Vi(s) -I-p-(:ga(.\' {u{a)+ B Vi(s — a)}. We see that this is equal to
_(1_3
(3.6), and in this way the theorem is proved. O
As consequence of this theorem, we have the following result:

Proposition 3.1

we(s) =4 Via(s)+¢, nelN (3.7)
Proof. Using Theorem 3.3, we can replace in {3.4) the expression p-va-1(s)+
G - wn_1(3), by Vao1(s), and consequently wy(s) = 8- Vi1(s) + ¢ o

Remark

3.2. Numerically, (3.1} is easier than (3.3) and (3.4), as in (3.1) we have only

one sequence of functions (V) )‘}\'.

In D/L/R, p. 1122, (formula {2)) the valne iteration is written in a different
form as in (3.3) and (3.4). That both formulae lead 1o the same result follows
from:

Lemma 3.1 Forn € IN, we have

n—1

’(U,I(S) =c Ur!(ﬁ ' (I') + [j N Z(ﬁ : q)y ' ‘“n—u—l(s) + (/6 ' q)n : VU(S): (38)

v=0
Proof. For n =1, ustng (3.4) we have
wi(8) = ¢+ B-pvls)+ 7 g wels)
= coo(B-q)+B-poools)+ (B q) - Vols)
~ Now we assume that (3.8) holds for n < k. for k € IN. Then for n = &+ 1,
using (3.4) and the assumption above, we get ‘

Wipr(s) = c+ B-pro(s)+ g wls)
k1

c+HBpv(s)+B-g-lc-alf-q)+ 8 -p- Z(ﬁ - q)” - Vkoyr(8)

v=U

+(B - q)" - Vols))

k-1 k=1
c (l + Z(ﬁ ' fi)"“) + 3 ('"A-(S) + Z(ﬁ )t "Uk_,,_l(S))

1=() p=0

- q) - Vols)
k .
3B a8 0 D (B ) as) + (B q) - V()

v=0 Lr={)
L

o)+ Bp S0 imnl) + (B ) Vils).

v=U

l‘.
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Therefore, (3.8) holds lor n = k 4+ 1, and thus the lemma holds for all
n € IN. i

However, the numerical solution by using (3.3) and (3.4) is easier than
using (3.8) (wlu(,h ts essentially formula (2) in D/L/R): since by using (3.3)
and (3.4), to obtain the solution {values of \ 2(3)), we must store in the memory
. of the compuler only the values ol the last [unctions, while by using (3.8), we
must store the values of all the functions V,(s) for 0 < v <n —1.

The natural expectation in an investinent process is that the n-stage maxi-
mal letum will increase in s and n. It is logical that "if we invest more we get
more.” Also it is natural to expect that with time increasing we shall have in-
creasing returns. The following theorems show that these natural expectations
are fullfilled.

] 2 : ; ) 7
0.71 0.8 8¢ 93 095 0.96
216 236 2.5 258 2.65 2.069

0.
[
2. 330 358 379 3 4.04 411
3.6
4.
q.

| o

O
~1 &

~
Y =] D ~I

4.20 4. 4.84 5.04 517 5.28

4.93 539 568 594 6.10 6.23

36 553 606 638 (.67 6.57 71.01
533 6.02 6.60 6.95 T7.26 T.50 7.66
573 6.43 : 3.01 819
6.06 6.77 S.44  8.63
6.34 T7.05 3.79  8.99
6.53  7.29 9.0 9.29

Table 3. 2 Va(s) for w{a) = af/Va? + 4, p = 0.25,
LA = 10, ¥ = 10, A= 0.85 ,dml
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Theorem 3.4 s — V,,(3) iz increasing and finde for all n € IN.

Proof. We show that the assumptions in Theorem 2,10 are fulfilled:

a) If s < s' then D(s) C D{(s'), as D{s) := {0,...,s}, il we choose ¢’ =
s+ 1= D) = {0,...,8, 5+ L}, consequently D{s) C D(s’) and therefore
D(-) is mclcd.mng.

b} s = T'(s.a,2) ts increasing lor all @ and @, as T(s,¢,v) =5 —a- 2.

¢) s — r(s,a) is increasing for all «. as r(s.a) = p - u(a) + ¢ - ¢ does not
depend on s.

d) V4 is increasing by assumption.
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In this way the theorem is proved.

[Un<{s)]

Figure 3.1. s — V,(s) for u(a) = a/Va® + 4, p = 0.25,
c=1, K =10, N =10, 7 =0.85, and
Vo(s) = s/Vs® + 4.

Theorem 3.5 Vi, (s) is increasing in n for all s, if either
(i) '
gl

and

Vols) < P;‘(%—- for all s,
— . q




p=1

-
¢ > —=-u(0).
q

Proof. Using Theorem 2.9, it is sufficient 1o prove that ¥ > V. For n = 1,
we have

Vils)=q-c+ 8 ¢ Vls)+p- Jnax {u(a)+ B - Vo(s — a)}.

We get a lower bound for Vi{s), choosing ¢« = 0 or ¢« = s. Therefore, usin
g i ) & )
a = 5 to prove the first assertion, we obtain

Vils) 2 q-c+ B q- Vols) + puls) +p - 3 15(0).
Thus V) 2 ¥ if

g ctq-B-Vols)+p-uls)+p- 3 V(0) 2 Vo(s)
From the last inequality, we get

pruls)+q-c

Vols) < ‘
o) =

asp-f-Vo(0) 2 0.

To prove the second assertion, we will use o = 0. Then
Vils) 2 g e+ q- Vols) 4+ p-a{0) + p- Vuls).
Thus V] 2 V. if
g-ctq-VYols) +p-u(0)+p - Vols) 2 Vl(s)
q-c+p-u(0) 20
¢ > L w{0).
¢
(W]

Remarks

33 (NWholdstl g <1 and Vy =dy- w4+ ¢oand 0 < dy < pf(l = F-¢), and
eo S q-cf(1—fF-q) (i) holds il # =1 and «{0) = 0.

3.4. Conditions (1) and (i1} are only sullicient, not necessary. lor example,
when u{a) = Ja, and Vy(s} = do - /s, n = V,(s) is increasing in n iff
VA dg < p,owhore X = (F = F-q) = p? - 42 (cl. Exdample 1).
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3.5. The Tables 3.2 and 3.3 show that s — V,,(s) and n — V,(s) are increasing,
if u(a) = a/Va?*+4,p=025,c=1,K = 10,N = 10,8 = 0.85 and Vy(s) =
s/Vs?+4, and u(a) = a*,p = 0.5,c = 4,k = 10,N = 10,8 = 0.80, and
Vo(s) = 0.5 - s? + 2, respectively.

3.6. The Figures 3.1 and 3.2 show that s — V,(s) and n — V,(s) are incre-
asing, if u(a) = a/va?+4,p = 0.25,c = 1,K = 10,N = 10,3 = 0.85, and
Vo(s) = s/v/s? + 4.

[Un(s>1

Figure 3.2. n — V, (s} for u(a) = a/Va* + 4, p = 0.25,
c=1, K =10, N =10, 8 = 0.83, and
Vo(s) = s/Vs? + 4.




3

O ¥

') } ;l

~

20.00  26.50
28.80 37.90
3296 43.10
35.14. 45.69
36.42  47.14
37.26 48.04

4.00 6.50 10.00
6.40  9.90 14.80
S.00 11.90 17.16
9.15  13.21 18.90
10.02 14.15 19.92
10.70 * 14.85  20.66
11.23 1539 21.21 37.85 48.67
11.65 1532 21.65 3830 49.13
11.99 16.16 2199 2949 38.65 49.48
1226 16.43 2226 29.76  38.92 49.76
1247 16.64 2947 2996 39.14 49.97

&t
o O

=1 & o W
o oo

-] G)_C,"\

[vd]
K Cn
a0 L B SNV S o> S S

— Ll b Lo e

fo o>
=1
fam P

o«

w

=]

< W

Rl S S e L e N

—

N
~

—_—

Table 3.3. V,(s) for u{a) = a*, p = 0.5,
c=4, N=10, N =10.49=0.380, and
Vols) = 0.5 8% 4 2.

Now we shall present the other three cases. We will use only Model 1.

3.3.2 The Discrete-Time Continuous-State Version

This case differs from case 1 only in the state space, action space and the
constraimnt set, as follows:
S=4A:=[0.K],

for N e I},
D(s) = [0, )

is the sel of admissible aclions al state s. Therelore
D={(sa)el0.N]?:0<a<s).

Note that
(s,a) — T(s,a) =5 —«

is measurable. Morcover,
(s,0) — r(s,a)y=p-ula)+¢-¢

is measurable. As before we assume Vhat V) is inereasing.

As in the first case, let V,(s) denowe the maximal expected n-stage reward,
if the initial capital is s and before il is known whether or not at time v = 0
an opportunily arises. Using Theorem 2.7, we abtain the following result:




Theorem 3.6 (a} Vi wmay be compuled recursively by the value iteration

VisY=qg-c+f-q-Vaoi(s)+p- sup {ida) + 5 Vo (s —a)}. (3.9)
U<a<s

(b) (Optlmallty Criterion) If [, s @ mazimizer al ataJe nforl <n<
, then the policy (fu)n is optimal for DPy.

Remark s

3.7. The word "maximizer” in Theorem 3.6 b) includes the property that s —
fa(s) is measurable. This was not necessary in the corresponding Theorems
3.1 b) and 3.2 b) for Case 1.

The results about the structure properties found in the first case and the
proofs remain valid {or the continuous-stale version, as follows.

Theorem 3.7 s — V,(s) is increasing for all n € IN, 0

Theorem 3.8 V,(s) is increasing in n for all s, if either
(1)
f<l,

creltae e
L=F-q
(ii)
ﬂ = 1.
and

¢ > L w(0).

'l
O

When u and ¥ are convex [unciions, we shiow in 3.9 that the optimal policy
" is to invest nothing or all which we have at hand (<. Table 3.4), in case an
opportunity presents itself.

When u and ¥ are concave. it is nol. possible to describe the structure of
the optimal policy, (except lor special cases of ¢, o € (0,1) and Ina, where
it is possible to find explicit solutions, cf. |7 \amplos I and 2 helow), but V, 1s
concave for all », as shown in 3.10 below.

Theorem 3.9 Assuwme thal v and Vy are conver. Then V, is finite and convez
and

s — [u(s) =

5, clse,

{ 0, &f u(s)—u(0)<H-(Vaoi(s) = Vo1(0)),

s a bang-bang mavimizer.




Proof. We prove by induction that ¥, is finite anel convex for all n € IN,

Firstly, this is true for 2 = 0 by assumption. '

Now we assmine, that V,_; is finite and convex, Then « — 8- Vi_ (s — a),
which is defined on [0,s], is convex by Theorem 2.1. As w is convex, also
a— Wo(s,a) = ula)+ - V,_1(s —a}is convex on [0,s] by Theorem 2.1.

It follows by Lemma 2.1, that « — 1W,(s,¢) assumes on [0,5] its maxi-
mum-either for « = 0 or « = 5. More precisely, the smallest maximum

point fn(s) has the form given above. Therelore, V,, = sup W,(s,a) =
: 0<a<ls

maz(W,(s,0), W, (s,5)) < oc. The two lunctions s — Wy(s,0) = u(0) +
B Vaoi(s) and s — W,(s,5) = u(s) + 8- Vi-1(0) are convex, as u and V,_,
are convex. Now V, is convex, by Theorem 2.3

Thus all functions ¥, are convex, and step e — | — n of the proof verifies
the assertion about f,. m]
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Theorem 3.10 Assume that u and Vo wre concave. Then

(i) s = V(s) and a = W (s a),s € 5. are concave.

(i1) If there exists a smallest maximizer f, al stage n, then s — fo(s) ¢
mereasing.

(iii} If there exists a smallest maximizer [, af stage n. then n — fo(s) is
decreasing.

Remark

3.8. fwand V) are in addition continuous at s = 0 and s = K and hence conti-
nuous, then the smallest maximizer f, at stage n. can be found by maximizing
the concave functions « — W, (s, a) on [0.s], s € [0, K]
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Proof. (i) The proof is similar as the one for 3.9,

Thus we only show that V, and « — W, (s, ) are concave, provided that
V-1 is concave. [irstly, (s,a¢) — V,_;{s —«) is concave, as a concave [unction
of an affine [unction is concave. As u is concave, (s,a) — W, (s, «) is concave
on the convex set £, by the "dual” of Theorem 2.1.

Now it follows that @ — W, (s, @) is concave. Moreover, s — sup W,(s,a)
0<ags

is finite and concave by Theorem 2.4, as D{s) = [0,s] is bounded. Now it
follows by the "dual” of Theorem 2.1 that V,, is concave.
(i1) For fixed n, we have
Vols) = q-c+B8-q - Voa(s)+p sup {w{a)+ 8- Vaca(s —a)}
0<ugs
=: sup {W(s, )}
0<a<s
Using the Serfozo’s criterion (Theorent 2.11), we have Lo prove that

Wi(s,a') = W(s, o) SW(s" a') = W(s, a),

for ' > sand ¢ > a, 5,5 € S and «. ¢’ € D(x). This is equivalent to

Vici(s=—d') = V(s —a) S V(s = 'y — Vo (s = a),

and this [ollows, as V,_; is concave, [rom Lemna 2.4, by putlling o := s — o,
hi=d —a,and 2’ =" —a" > u.

(111) This dSSGHiOI] is pm\cd in D/L/R, we can use this proof, replacing
Vi, s) by (Va(s) = - q- Va1 (5))/p and \f(n s) by 8- Va(s). O

Remark

3.9. In some models, with contimous state one could use @, := portion of s,
invested, hence D(s) = [0, 1], Tls,a.a)=s-11 —a-a), j (s) € [0,1] and hence
fuls) = j,, (s)/s. If j,, is a. bangj-hang3 maximizer, then n(s) € {0,1} and vice
versa.
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Table 3.5. f.(s)forc¢=1, u{a) = In(a + 1),
p=0.25 N =10, K = 10, 8 = 0.90, and
Vo(s) =In(s+1)+3.

[Un(s)1
D-

Figure 3.3. s — V(s)forc= I, u(a) =In(e + 1), .
p=0.25 N =10, K =10, 8 = 0.90, and
Va(s) =In(s + 1) + 3.

Remark

3.10. At first sight it seems strange that in the example of Figure 3.4 V.. (s, p)
is decreasing and not increasing in p. That this can really happen, can be seen
in the case of Example 2 when

Vils) = (p+B-do)lns+g-c+p-lnd+8-eo

34




= p-(Ins—c+lnk)+F-do-Ins+ B-eo,

and X and ey are independent of p. Therefore p — Vi(s,p) is decreasing if
s < 8" := ¢“*, and increasing, if s > s".

[Un(s)1

Figure 3.4. s — V,(s) forc =1, u(a) = In{e + 1},
p1 =025, pp = 0.50, ps = 0.75, pa = 1.0, n = 7,
K =10, 8 =0.90, and Vp(s) = In(s + 1) + 3.

Theorem 3.11 If u and V; are continuous, then

(S,p) — Vﬂ(s?p)

is continuous, and hence V, (s,p) is also continuous in each variable.
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Remark

3.11. We use repeatedly, without further mentioning, that the sum and the
product of continuous functions are continuous, and Lhat a continuous function
of a continuous function is continuous.

- Proof. Case n =1.
As Vg and (s,a) = s — @ are continuous, (s, @) — Vo{s — a} is continuous.

As u is continuous, also {s,a) — u(a) + - V(s — @) is continuous.
Now it follows from Lemma 2.7 with n = | and d(s) := s, that

s — sup {ufe)+ 7 - Vo(s — a)}
0<u<s

1s continuous. Finally, it {ollows from

Vi(s.p)=q-c+ f-q-Vols)+p- sup {ula) + 5 Vol(s — a)},
, U< s

that (s.p) — Vi(s, p) is continuous.
Now assume that (s, p) — Vi(s.p) is continwous. Then

(s, p,a) = Wis p,a):=ula)+ 5 Vi(s —a,p)
is continuous. Using Lemma 2.7 with n = 2, d{s, p) = s, we see that

(s.p) — sup W{s,p,a)
U€n<s

1s continuous. Now

Verr(5:9) = g+ c4 - q- Vils p) 4 sup {ula) + B+ Vils = a,p)},
U€a<s

shows that (s,p) — Vigi(s,p) is condinuous. (]

In principle, V,(s) = oo is possible. A sufficient condition for V,(s) < co
is continuity of u and Vg, as V, is continuous on the compact interval {0, K]
by Theorem 3.11, hence V, 1s bounded by Theorem 2.8, Another result is

Theorem 3.12 /f 8 < | and if « is increasing. then there exists V(s) :=
nll_l’":)]., Vi(s) and V(s) < -.%5 Ay e 4+ p - jul).
Proof. (a) V, is mcreasing by Theorem 3.7, as V4, is increasing.

(b) From the VI, we obtain

Vi(s) = q-c+ 8 q Vi (sy+p- sup {wle)+ - Vi (s — a)}

U<uss
< g-c+Bqg- Vi (s)+p-(sup u{a)+ 3 sup Voi(s —a)).

- U< 0<ass
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As u and V,_, arc increasing, then sup w(a) = u(s),and sup V(s —a) =
nga<s 0<a<s

V._1(5). Therefore

Va(s) S - c4 8- Vioy(s) + p-uls).

Now the assertion follows [rom Lemma 2.5 with b, ;= V,_1(s), s fixed, ¢
replaced by ¢ - ¢+ p- u(s) and o := . Thus

)) - ou(B) + 5" - Vols)
(s)])

Va(s) (¢-c+p-uls
|

<
< (g lel4p-[u(s)]) - ou(B) + 8" - [Vo(s)] (3.10)

(¢) By (a) and (b), V,, converges, and letling n go to infinity in {3.10) we
obtain the upper bound of V(s). 0

3.3.3 Closed Solution

While the theorems above vield the structure of the optimal policy and-of the
value functions V, and can be used. in the obvious manner, to simplify the
necessary computations, they do not present a closed-form expression for f,
and V.

Example 1: A special case [or which the optimal policy and the value func-
tions can be compleiely specified is when u(o) 1= a® and V(s) 1= doy - 5% + eg,
0<a<!,dy€Ry,ep€ IR Then the VI reads for n =1

(8) g-c+qg-B-(do-s" +eq)+posup {a® + 5 (eo+dy (5= a))},

ULu<s

g-c+fB-co+q-fdy- s +p-sup {a® +F-dy-(s—a)}.

U<ass
For dy > 0, we have for 0 < @ < s and g(a) :=a® + f-do - (s — @),
‘ o=l . o1
gla)= a a7 —a-Fody- (s —a)

= fBdy - (s —a)T!

=1
(B-dy)a7 ) .

(t
—f————jI:-4-a
(B do)a=T




(B dp)’  a+a a

<
=

{

T+ (7 doy € (0,s).

As ¢ is concave, " := /(1 4+ (8- dy)") is the unique maximum point of ¢ by
Theorem 2.6. For dy = 0 the function ¢ has obviously the unique maximum
point ¢ := s. [t follows that for dy > 0 and also lor d;, =0

s — fis): -

Ts (f’; ~dy)?

is the unique maximizer at stage n = . Moreover, we get

Vi(s) = q-c+ﬁ-cg+ﬁ'qug-sﬂ+p-(_l—_l_——(%ﬂ) +

B ll' .‘..___.._:H..._...__. ”_
+8-p-dy ( 1+(!3"(fo)p)

Put §:= 1 + (- dp)”, Lthen

, . . e - do)?
et BoeotBogdes st pe s (5 +Lﬁ_30_))

P . St‘n

-c+;‘1-eu+ﬂ.q.ézu-sﬂ+T-(1+(ﬁ-do)f’)
‘C+fj'eu+,ﬁ'(['du'.‘_'*'“+}J'.‘.\‘n _é‘l—ﬂ
et foeco+ (Boqgodydp )80

e oot (Brg-dotp (L+ (B do))'70) - 8%

Boq-do+p-(1+ (8 dy)") ",
q- C+ﬁ T

then
\’1(.‘5) = -+ (n"l . .‘?t.,

and
N

I+ (8- dy)?

s = fils) =

Therelore, substituting d, for dy above, we obtain Vy(s) = dy - 8% + e3, where
dy € R*, e; € IR and maximizer f,. also substituting dy for dy above, we
obtain Vi(s) = dy - 5% + e3, where dy € 17, ¢y € IR and maximizer f3, etc.
More formally we obtain from the VI by induction on n, using the maximum
point a* of the function ¢ above, the lollowing result:
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Proposition 3.2 Assuinc thel o € (0,1), w(a) = a".a € A, Wo(s) =do-s* +
co, 3 € 8, Jor some dy € Ry und for some cy € R. Then the following holds:
(1) V, is of the form

V;L(S) = dn st + ey, & E Ss ne IN&
for some d, € RY which salisfy the recursion
dy=B-q-doy+p-(1+(B-duey)) ™, neIN, (3.11)

and

en=q-c0u(B)+ 8" e foreo € R,
(it) |

b

|+ (;U : t"’n-l )P

s ./ﬂ(“q) =
is the uniqué mazximizer at staye n € IN.

Note that ¢, has a closed solution. as using Leimima 2.5 we obtain

n—1

€y e q e Z ‘H! + ﬁn .

=0
Obviously e, converges lowards ¢ - e/{1 — F) il n — o0, iff f <1,

Lemma 3.2 flel (G be an increasing funclion from I € R into R, select g € 1
and define ()7 recursively by w4 = G, ), n € IN,
If &1 2 wg then (x,) is increasing, and if vy <y then () is decreasing.

Proof. We show that (2,) is increasing il ap 2 24. ('Fhe other result is proved
in the same way.)

We have to show that

t, a4y, forn € IN (31 )

For e = 0, (:3.12) holds by assumption. Now assuime that (3.12) holds for some
n € INg. G(a,) < Glapsr) by isotonocity of G and thus 2,42 = G(2pg) 2
G(x,) = tpgr. Therefore (3.12) holds also for #+4 1 and therefore by induction
for all n. . m;

Proposition 3.3 Let f < |. P K(B):=(1-f-¢)»—(# p)*,0< B <1
Then (dy) is increasing, if cither p 2 dy or if p < dy and B > B*, where 8° is
the unique solution of N(f) = (+)".

o




Proof. Applying Lemma 3.2, (d,) is increasing il dy £ dy. Now

dy )
& dy fBogode+p-(l +(ﬁ'do)p)1"“
& do—pB-q-dy pe(14 (8- do)*) ™"
& do-(1-P-q) pe(l+(f-do)) ™" (3.13)

Case 1: do = 0. Then (3.13) holds.
Now assume dy > 0. Then, as # < |, we have | — f#-¢ > 0, and hence
(3.13) is equivalent to

A (1= q)=
& di-(1=f-q)
& {I’S (L =8-q) = (p-8-dy)

& KNB)=00-0-4)-(F p)

P (L + (B do)”)
P (L4 (B - do)?)

Py

IA A A

LAY
dn)

IA

Obviously A" decreases on (0.1] from 1 1o 0.
Case 2: p > dy > 0. Then (3.14) holds for all 3 € (0. 1].
Case 3: p < dy. Then (3.14) holds HI' B > #=. where 87 is the unique

solutton of N () = (;‘%)"

Now the proposition follows, as we can combine cases | and 2 1o the con-
dition p 2 dy. i

Theorem 3.13 If 5 < 1, then

P
(L= a) = (fp)) ™

Proof. (a) (d,) is increasing or decreasing, and o, 2 0,¥n. Therefore d,, 1s
converging, if d, 1s bounded above.

(b) (d,) 1s bounded above.

Let (z) ;= I + 2% = (1 +2)", with § < v < 1, and > 0. We have
h{0) = 0 and h is increasing, as h'(w) = v+ (277 = (1 + a)"1) > 0, for all
z > 0, therelore i{z) > 0. Consequently

‘ b2 < () + :1')“': (3.15)

Combining (3.11}) and (3.15), with @ == (# - )", 7 := | ~ @, we obtain

L+ (B dusy))

(1 +(F-de))' ™" <
S l+.ﬁ'dn-—l'

4()




Ao dyy+p-(1+8-dioy)
/‘j . dn—l + -

dy

<
<

Applying Lemma 2.5, we gel

dn < peoon(B)+ B dy

as A" - dy < dy.
(c) Taking the limit for » to infinity in

dy=0-q-doci +p- (104 (B dusy)?)7,

we obtain
d=f-q d+p-(1+(F-0")7".

Here we have used that @ — {1 4 )= is continuous. Now we have

d Bog-dt+p (1+(8-0))°
& (1=p-q) P (g dp)
@A =Fg) = (Bp)) = )

) i

(1=B-qp=(B-p))™

as (1—=f-q) = (8-p) >0

Therefore

Proposition 3.4 [f # < | and pulting A ;= (1 — - q)* — (8- p)?)' ™7, then
forn —
(1)
— .+

anid
(ii)
PRI
/\ + !:)’ ‘ P.

Proof. By Theorem 3.13 d,, converges towards p/A, and e, converges towards .
q-cf/(1— ), il 3 < 1. Then veplacing these expressions in Proposition 3.2 (i)

and (i), we obtain
g-c

| -4

Iz

V(s
(s) — ; +




. ~ '/\
fu(s) — TTE

a

Example 2: Another special case for which the optimal policy and the value
functions ¥, can be made explicit is when § = A = (0,s), D(s) = (0,s),
u(a) ;= Ina, a € (0,s), and Vo(s) :=dg-tus4eq, s € (0,K], do € R*Y, o € R.
Then the VI reads for n = 1

Vi(s) g-c+B-q-{eoa+do-Ins)+p- sup {Ina+g-(eo+do-In(s —a))}

O<Ca<gs
g-c+Bep+pB g do-Ins+p- sup {Ina+f-do-In(s—a)}.
U<u<s
As dy > 0,
gl :=Ina 4+ 7 dy-1n(s —a),

has the detivalive

‘ ' ‘ 4-d
fla) = = - 120

. 0<a<as.
@ s—=a

As ¢ is strictly concave, it attains ils unique maximun o, iff

[
g'la)=10 &> —-—[ i 0

a s —a
s—a a-fFdy
s

1+}3d0

"

Thus

- I +‘b’ '(IU..
Note that fi(s) € D(s) =({0,s), as s >0 and as 1 + #-dy > 1. Moreover

s — fils):

Vi(s) g-c+fF-co+p-q-dp-lns+p-n +

BodiInls ——m——
+p- B -dy Il( |+,"')"(fu>
g-c+fFrcotfog-dy-Ins—p-ln(l +8 do)+p-Ins

-{-ﬁ-p-du-]n(ﬂ-du)-l-ﬁ-p-du-lns—p-ﬂ-dg-ln(l.-hﬁ-dg)
qe+ P e+ (B -dodp)-Ins—p- (1 +8-dy)-
(L + B do)+p- - do-In(F-dy)

(5 d)*
(14 B - dy) +Ho

l+ﬁ(l’0

g-c+p-ln +fB-eg+ (B -dog+p)-Ins.

g2




Put Ay := (B dy)P /(1 + 3- d)1 e
V-l(-‘i) =g« -+ fUN Ill /\.“ + /'j AT + (,U - ff(] + .H) : I” S,
therelore
Vils) =¢e +d;-lns, dy >0,

where :
' cr=q-c+p- -+ 5 e,

_ ([3 - d'(]),'."ldo

T B dg) ¥R
dy =p+ 8- do,

and

3
Therefore, replacing dy lor dy above, we obtain Vi(s) = dy - Ins + e, and
maximizer f2, for dy > 0, and ¢, € IR, ete. More [ormally we obtain from the
VI by induction on n, using the maximum point «” of the function g above,
the following result:

S il(")

Proposition 3.5 Assume that S = A = (0. K], D{s) =(0,s), u(¢) =Ina,a €
(0,5), Vo(s) =do-lns+ep, s € (0.N], for some dy € RY and for some g € R.
Then the following holds:

(i) Vi, is of the form

Vi(s) =dp - Ins + e, n € IN,s € (0, K],
for muwmbers d, > 0 which salisfy the vecursion

’ d'n =p- Jn(ﬁ') + ,fn * (',U-. i e !Nu

Cp = ([‘C+P‘I“1\n—-l +ﬂ‘(3n—l-. Cr-1 € “{
| (B gy )
(l +‘[j.(fﬂ_l)1+."3du—l.

’\rt-l =

3

I + ﬁ ' ([n—l

s fuls) =

i + (!,,

is the unigue maximizer ab stage n € IN.
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Using Lemma 2.5, we find the closed solution of d,:

=1

dy, =p- Z B G dy.

=0

As d, has a closed solution, if n — oo, it converges towards p/{1—g) iff § < 1.
We have

Cp = f]'("+ﬁ‘9n—| +1') In f\n—la (316)

with

A — - (ﬂ ([”_l)_fid,,_l
n-1-— (] + ﬁ . (l'”_l)l"f'ﬁd,,_] .

Asd, — p/(1 = B)if B <1, it implies that A := lim A, exists.

W=l

Put pp:i=¢-c+p-In A, then
Ve> 0,3 nple)ig-c+p-lnd_y <p+4e, Vn2ngle).
Replacing (3.16) in (3.17), we obtain
en S B cuoy e Yn 2 nple).
[t follows hy induction that

B Cngih=r + i1+ ¢, k2 ng
et (et frocngre-n)

6110-!-1{

IA A A A

(0 +¢)-an(B) + 0% Chps VA E IN. (3.18)

If & — oo, the right hand side of (3.13) converges towards (¢ + €)/(1 — §),
thus e, < (g + ¢)/(1 = ) for all n large enough. Thus

R i+ ¢
hmsupe, < ! -
H—rG | _ﬁ

. As this holds for all ¢ > 0. we have

hhmsupe, < -

Analogously Ve > 0.3 ngle) : ¢-c+p-Ind,_) 2 yr—¢, proceeding in same
manner, we gel
hminl >

n—o0 ' —ﬁ




As pf(1 — ) < Liminle, < limsup < p/(1 = f). we have liminfe, =

n—o0 R n=—0o

limsupe, = g/(1 - ) and hence

=00

Therefore,

Proposition 3.6 {f < 1, . then for n — oo

()

Vils) = —17 p-Tns 4 p),

and
(ii)
s (=)

fﬁ(s) - 1__ ﬂ _q *

Proof. The proof uses the convergence ol d, and e,. As d,, converges towards
p/{1 = B) and e, converges towards p/(1 — A) il # < 1. Then replacing these
expressions in Proposition 3.5 (i) and {(11). we obtain

[

Vi(3) — _I-TT(; ApeIns+ ),

[(s) — s-(1=7)
EEI AN !—{[_}q‘
O

Remark. .

3.12. Even il a recarsion for a sequence (d,} has a closed solution it may
be better to use the recursion for computations. The closed solution may he
useful for studying properties of sequence (d, ).

Example 3: Here we assume that ris,a) =g c+p- (I - Ja+hy- Vs —a+
ha - \/s), Vo(s) = do - /5 + ey, Tor some dy € IRa, ¢y € R and hy, by hg > 0.

Then the VI reads for n =1

gcH+B-q - (do-Vs+eo)+p sup by Va+hy Vs—a+

U<u<ly

thy s+ B (do Vs —a+e))
gc+Beg+Bogody- s+ p-ha s+ pe osup {hy Vet (ke +

0<a<s

+5 - dy) - Vs — a}. (3.19)




Put g(a):=h - Ja+{ha+ 8 -do}- Vs — a. Then g is concave, and analogously
as in the cases above, we obtain

2
i s

T4 (o)

a”

as the unique maximum point of g.
Substituting e* in (3.19), we get

Vi(s)=gq-ct+f e+ (ﬂ'fl‘fio-Fi" (h.;;-k \/"’f‘i‘(hz*‘ﬁ‘du)?)) Vs,

Therefore
Vi(s) =d, - Vs + ey,

where

dy=8-q do+p- (ha‘i' \/ﬂ"ff‘i‘(hz‘i'ﬁ'do)?) ,

and
¢r=q-c+ e
More formally, we obtamn
Proposition 3.7 If v(s.a) = ¢-c+ p-{ly - o+ ha - Vs —a+ hg - /5),
Vo(s) = do - /5 + ey, for some dy € Ry, for some eg € Roand by, ho hs 2 0,

then

(i) V, is of the form
' Vo(s) = du - V5 +cn. 1€ NN,

for some d,, € RY which satisfy the recursion

dy=8-q-du_y +p- (h;; + \/h‘f + (y + - dacy )2> , n€IN

and
Ch = q S Uu(ﬁ) + ‘ﬁ,i " Co. co e l].{
('r'i)
_ hf -
Wt (hy + 8 dus )’

i& the unigue maximizer al stage i,
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3.3.4 Allocation times as renewal process: Discrete-
State Version '

In this model it is assumed that opportunities arrive at random times 0 =
To < Ty < T3 < ---, but only opportunitics before some given time tne, € IN
are allowed. As a consequence, the state s, at the time of the v-th allocation,
v =0,1,2,.... must consist of the remaining resource ¥, and the remaining
time 1.

Now our state spuceis S := Ny, x Ny, where A has the same meaning
as before and {yar € IN. The stateis s, = (L., y.), where i, is the time available
for further investment and y, is the available resource, both before the v-th
investment has been made, » € INg.

A and a are defined as before.” We assune that the disturbance random
variables X, are i.i.d. and X, > 0. hence that the sequence (T7,), where

n
T, =2 X;is the time of the n-th allocation, is a renewal process.
=1

Xopt is the time undil the next opportunity, and its distribution on (0, 00)
can be arbitrary. Important special casc:

X ~ geo(p). Tlis s a discrete time counterpart of the model where
S = [0, L] % [0, K] andd X ~ cxp(A). lor A € R*; this corresponds
to the case of DJL/R, as (13,) is a Poisson process.

The disturbance spuceis M = {0.1,.. .}
D y)y = {0,

is the set of admissible actions af state s = (I, y).
The transition function s given by

f — )t g, —a ift, >0
Spt1 = Tl sy, Tug) = { EE] '-'I ) U).ll.f l— 0 & ’ ’
s ) = U

by, an) = { S.(U)‘”‘ ,f, II:!.U> gy

the one-stage reward is

rit y.a)= { &(“);r ;.IE—_!'().> !

The terminal reward Vo, yn) 1s defined as wy(yn) 2 0, e.g. Wolin,yn) =
do - u{yn), for some dp € Ry, We assuine 19(0) = 0, and no discounting, i.e.

=1




Now we assume that the process ol opportunities stops when £ = 0 is
reached. Lot V, (1, y) denote the maximal (-:ip(-:(:l.c(l reward when the initial
state is (£,y) and when the process stops after the n-th opportunity or after
reaching 1 = 0, whichever occurs first, Then the VI is ol the form:’

V(L) Jnax {wla)+ £V (0= X)P oy —a)}, if >0, (3.20)
2l Y) = ey .
I voly), ii=0

This VI is different from the V1 of D/L/R {p. 1128). _
Now we assume that X ~ geo(p),p € (0, 1) so that the process, starting in
(t,y), t € IN, stops after at most » := { oflers. Therefore

V2t Valby) = Vilt,y) = lim Vi(Ly) =: V(L y).

n—uod

The VI simplifies to

ax {: SVt~ XYy —a)}. il \
V(Ly)z{l}g:\g\y{t:(u)—l—l ({ Yoy —a)}, iL>0, (3.21)

mly), 14 =0.

If p{e) :== P(X = x),« € IN, we obtain il L >0

t
V(i.y} = max{u(n A=)y V=, =« 3.22
(t.y) wﬂﬂ)%;ﬂ( ») ( y—a)} (3.22)
=: max Wt y.a), € WNgy, . ..1y €INgp,
¢ 0Za<y |
Note that (3.22) can be solved numerically by 7 recursion in state space”,
starting with V{0,y) = vo(y) for 0 <y < Wil V(X ') is known for 0 < ¢ <
t — 1 and all 4" € INg, V(L. y) can be computed lor all y by (3.22).
Moreover, il f(L,y)is a maximum point of « = W(i, y,a) for all (¢,y) € S,
then (f, f,...) Is a stationary infinite-stage optimal policy.

Remark

313 0IF X ~ eap(A), then

Vit y) lim V, (4, )

the maximal expected reward when the process goes on until

it reaches ¢ = 0.

3.14. D/L/R present one result about the concavity and the monotonicity of

value functions and the optimal policy.

Now we prove some structural results for the general model where X has
an arbitrary distribution, and where the VI is given by (3.20).
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Theorem 3.14 Assume vy(0) = 0. Then
(«) V{L,y} is increasing in 1.
(b) V{1, y) is increasing (n y. if vy i fncreusing.

Proof. (¢} We prove by induction on e that ¢ — V,(4,y) is increasing for all
Y.
Firstly,

voly), it >0,
0, ift=0,

1s increasing, as vo(y) 2 0.

Now assume, ¢ — V,_;(L,y) is increasing, Yy. Then, as t — {t — z)
increasing for all , and as an increasing [unction of an increasing function
is also increasing, § — Vo ((f = X)*.y) is increasing. This implies that
t = EV._ ((t = X)*.y — a) is increasing for all y,«. As the supremum of
increasing [unclions is increasing, & — ¥, (4, y) is increasing on (0,14 by
(3.20). '

Moreover, {or £ > 0 we have, as «(0) > 0 and (1 = X)t >0,

Valloy) > a(0) + £V (0= X0)Foy)
2 Vi (U.y) =0
= woly) = Vi (0.y),

+ is

hence { — V, (L, ¥) is increasing on [U,[,,,(,J:].
(az) As the limit of a sequence of increasing functions on S is increasing,
then t — V(L y) is increasing.

A{by) Firstly,
’ voly), ML >0,
Voll.y) = .
y = Yoll.y) { 0, ifL=0,
is increasing, as vo(y) > 0. Morcover, y — V(0. y) = ve(y) is increasing.

Now asswtine, y — Vi, ({',y) is increasing, Y. Assume ¢ > 0. Then, by
(3.20) and Lemma 2.6, and by the justification used in (a,), y — Vo(t,y) is
increasing on [0, K].

(b2) As the limit of a sequence of increasing lunctions on S is increasing,
then y — V({,y) is increasing. 0

3.3.5 Allocation time as renewal process: Continuous-
State Version

This is the last case: instead ol diserete-state. we have continuous-state, the-

refore

S = [0 !'mru:] x [0, ]\]

Also, instead X ~ geo(p), p € (0.1). we have X ~ exp{)), A € R or
other distribution, e.g. gamma distribulion.
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3.4 Non-stationary problems

Some of the previous results remain valid even when the probability of an
opportunity, the management cost, the utility lunction and the discounting
change from period to period - Non-stationary case.

We treat the discrete and the continuous state case jointly.

3.4.1 The Discrete-Time Discrete and Continuous-State
Version '

S,5,€8, A, a, € A, D(s), and D are deflined as in the stationary CM.

The independent random variables X, and the set M are defined as in
the stationary case, but now the distribution of X, may depend on ». Then
o = P(Xyous = 1), 1T < n < AN s the probability of an opportunity at
stage n, e.g. p, = a™ ", « € (0,1). Notc that il n — p, is increasing this
means that at later times v smaller chances lor opportunities occur. Also we
pul gpi=1—py.

T:DxM—2S

is the transition function independent of n, given by

Spg| = 8y Ty -\‘u+l-

We also allow that the discount factor, the management cost and the utility
function depend on n, i.¢.

Fn(«ﬁ,(l,.’i‘.) = { “”(a)- il e = 1,

Ca ax =0,

for functions u, and ¢, € IR. Therclore

ra(s,a) =p, - unla) + ¢ Ca,

is the one-stage reward.

Vo, and B, > 0 are arbitrary. V4 is assumed 1o be increasing.

Note also that il p,, c,, w, and 3, do not depend on n we return to the
stationary case.

Now let ¥,(s) denote the maximal expected r-stage reward, if the initial
capital is s and before it is known whether or not at time v = 0 an opportunity
arises. Using Theorems 2,12 and 2.8, we obtain the following result:




Theorem 3.15 (Continuous-State Case) (a) Vi may be computed recur-
sively by the value ileralion
V,,(S) = -Gy + Gn - ﬁﬂ : \',;1—4 (") + fa - SUP {”u(“) + ﬁn : V;z—] (5 - a)}
U<als
= a'Cntqn- ﬁu ’ l";l—l (S) + - oSUp {H/n('ga (1.)}, (323)
U<uls
where Wy(s,a) == u,(a) + B, Vo1 (5 = «).
(b) (Optimality Criterion ) If f,(s) is « maximum point of a — W, (s, a),
for1 <n < N and s €8, then the policy ([.)N is optimal for DPx.
(c) If u, and Vg ave continuous, then there crists a smallest mazimizer f,
at stage n, and Vy is conlinwous for all n. (]

Remarks .
3.15. The results {a) and (b) hold also in the discreie-state case, sup can be
replaced by max.

3.16. 1t is easy to sce that under the same or similar conditions, the Theorems

3.7, 3.8, 3.9 and 3.10, about monotonicity, convexity, and concavity of ¥, and
fa hold also in the non-stationary case.

3.4.2 Closed Solution

Example 1: Let be uy(a) := by o and Vols) := dy- s+ eg for some dy € Ry,
eo € R, b € RY and o € (0, 1). Then the VI reads for n =1

Vi(s) = qr-c+q -0 (do-s" +eg)+pr - sup {bp-a® + 31 -(eo+dg-
0<u<gs
'("q_ “’)c.)}u
Groa+pfietq-Bode st b sup {by-a® + fr-do
Ugugs
(" - (’)“}:
for dy > 0. we have

gla) = by -a™ + 0 - dy - (s = a)°,
gla) =10 & a-by-a" VM —a B dy (s =)t = 0.

As g is concave by Theorem 2.6, as in the stationary case we obtain

as Lhe unique maximum point ol g, for dy > 0, where

|
= .
'(_ | —a

B!




Moreover, we gel.

- . 31 '(l(_) P t-e o
Vils) = qu-er+81-eo+ i qi-do+pr- 1+(‘b—) - 8.
0

q. . n’.' o —o
ﬂ] q - (!.U +])1 . (1 + (fjli (U) ) :
o

qllcl_i_ﬂl'e()j

Let be

then
Vi(s) = ¢ +dy - s,

and

s i) =

More formally, il v, (a) = b,—y - a®“. v € (0.1), and b,y € R*, for alln € IN
we obtain from the VI by induction on n, using the maximum point e, the
following result:

Proposition 3.8 Assume that jor some o € (0, 1), wy(a) = byey - a®, for all
n, e €A Vyls)=do- 5.5 €8, for some by_y € RY, for some dy € Ry and
for some eg € R. Then the following holds:

(1) Vo, iz of the form

Vi(s)=d, s +e,, s € 8. €N,

for some d, € RY which satisfy the recursion

ﬁu ' du-l AN +
dn = ﬂn “n ([l'l—l 4 5y, - |+ | ——— s ne LN:{JN'-I & R s

bu-—i

and
Cp = (u ' Cy + ﬁn LR fr”' Ch—y € IR.

(7i)

&

- i
e
()

is the wnique marimizer ol stage n € IN.

s — fuls) =

. Note that e, has the following closed solution

e, = Z(q e)igr - B4 Ay, l[or ey € IR.
s




Lemma 3.3 Let | ¢ R. Assume that H, : I — R, n € INy, s imcreasing
and Hy < Hoypy (Mo > Hogl) Joralln, I wg € 1 and a4 = H,y(2,), n € Ng

and 2, > xy |2y < ap). Then (w,) is tncrcasing [decreasing].

Proof. Case 1: 2, > ap.
We show by induction on n that

gl 2 ity (3.24)

At first, (3.24) holds for n = 0 by assumption. Now assume, that (3.24) holds
for somen € INg. Then &9 = Hopy (w01} 2 Hugpi (@), as Hyyq is increasing.
As H,y1 2 H,, we obtain H,.{x,) > H.(x,) = @a4:1. Altogether we have
Tapz 2 Tagy- LThus (3.24) holds for n + 1.

Case 2: 2, < 2q

The prool of this case goes through exactly as in the case 1.

Now the proof is complete.

As

5 ,"‘ju ) (ln—l AN
dn = ﬁu sl (!n—l -+ s t + _!:—
rie1

= Hu(drl—l )-.

- ’,z Cp py, 1—a
IVIH(:“) = [:j”' ’ q” vt + :’)ll ' (I + ([!’_-_r) ) .
Y=

we have

Lemma 3.4 Assume that b, = b < ), for afl n € Ny, and B, = B3, for
all n € IN, and that (py) is increasing [deereasing]. Then Hy(x) € Hppa(z)
[Hu(z) 2 Huygi{a)] for all 2 € Ry,

Proof. We will show that the first assertion holds, We have

Hy(w) < Hopp (o)

”>p) [ET

Bt pa 8 B quyr 4 pagr -0

for all z € R,.
Let he

therefore

Bratp,-(d~F-a)<F o+ peg - (6= F-2)
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P (0 =32} S pagy - (6 —fF-2).

As pn < payr, iU s enough to show that,

db—F x>0,

for all € IR4. Then as

(o))

|

-}.’r:)p > (o)

Ao\’ '
| + (r_!") > (8 «),
) .

we see Lhal (3.25) is always positive, as (/- «/b)” > (# - x)?. Thus the first
assertton is proved.
The second assertion is proved exactly as the first assertion. 0O

Applying Lemmas 3.3 and 3.4, and observing that H, is increasing we
obtain the loilowing result:

Theorem 3.16 If (p,). is increasing [decreasing] and b, = b < 1, for all
n € INg, and B, = f for all w € IN, then (d,) is increasing [decreasing]. a

Example 2: Now we assume that S = A = (0, A}, D(s) = (0
bo - ha, Vo(s) = dyg - Ins + ey, Tor some dy € R ey € N, € (0,5),00 € IR
and s € (0, A']. Then the VI rcads for n =1 :

(8) = qre+0-q-{cotdy-lns)+p - sup {bg-Ina+ G (e +

U<a<s
+dy - In{s —a))}

G+ M eo+foqody-Ins+p e osup {bo-Ina+ B8y -do-
. U<a<s

(s - a)}.

As dp > 0, then :
gla) =by-Ina + ) - dy - In(s —a).




[t has a derivative

bo B dq
g'(rr):-ﬁ-—'tl 2 0<a<s.
@« s—d _

As g is strictly concave, it attains its unique maximum o, tff

&

« = -——-—-—7| T
bo

Then

i+ B eo+Byoq ody s 4y dn +

+py - By dy - In (" - m_::"__'f—)
e

i3 -an

(ﬁ]'d‘(}) b
b
: Fydy + 3 cot+ (B -do+ p) “Ins.

i 1+ Ly
( I + 13 o 0]
) bo

3 -dy
I + =

¢r-¢; +p;-In

ap-dp 1 Apdg

, . +
Put Ay := (%) B /(l + flbu'ﬁ) " then

. vl
Vils)=q -cr+p-Indo+ 41 - eo + (p, + ﬂlb 0) -In s.
0

Therefore
Vils) = e + d; - Ins. dy >0,
where
o= gret ot B e
ﬁl -y

dy=p + b
U

I() [+%ﬂ,—0‘

More formally, if w,(a) = b,_, - Ina. and b,_, € IRF. for all n € IN, we obtain
the following result:




Proposition 3.9 Assume that S = A = (0, ], D(0.s), u.le) = byy - Ina,
for all n € IN, « € (0,5), Vo{S)=dy - Ins+ ey, 5 € (0, ], for some dy € R*,
Jor some e¢g € R and for some by_, € Y. Then the following holds:

(i) Vy, 1s of the form

Vis)=d, - Ins+ e, ne N, s e (0,N],
for some dy, > 0 which satisfy the recursion

A, - d,_
dy = pu + Zo ' Gnot ne€lN, -

brz—l

€np =y " €y + Pn In f\n—l + ﬁn *Cpets Cp_g € lRa

dndy,

(ﬁ,,-(f,,_| [
by
1\”_] = : b,l_] G IR+

Budy 1 ?

1+
l'?n'“'n-l by
(I + bn«-l )

(11)

=

s — fuls) = ———
L+ =50

is the maximizer al stage n € IN. 0

3.5 Flow Chart For General Allocation Pro-
cess

In the discussion of the reduction of problems [rom mathematical formulation
to computer code, we shall explain the process with more details so that it
can be easily programmed by somcone who is not lamiliar with the original
mathematical problem or technique. Later the flow chart will follow a similar
way and will be assumed to be sell-explanatory {cf. Appendix B).

Stepl. The basic code will use the value iteration (3.1) to compute a
tabular function s — ¥, {(s) using the whole lunction V,_,. In order to begin
the initial step of calculation, we must store ¥ as a tabular function. We can
now have the computer determine V) (s) using 14 in the same manner as it
determines V,(s) lrom V,_;.

Step 2. The index n will denote the nuinber of stages thal we are conside-
ring. The index n will be increased as the caleulation progresses (see step 16).
We start with n = 1.

Step 3. We shall compute a table of values representing the function ¥, (s)
at discrete points s. The initial argnment Jor which we compute Vi (s) is s = 0.
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After computing and storing V%, (0), we compute V¥,(1), and then V,(2), and so
on, until the table is complete.

Step 4. The cell e will contain the ’:l')c:sl, return so far” as we test various
actions seeking that which maximizes @ — W, (s, @). Setting this cell initially
to a large negative number (denoted by -o00, we can use, in stage n, Wy(s,0),)
we guarantee that the smallest action tested will he accepted as the "best so
far.”

Step 5. We use [,(s) to denote our smallest allocation decision given a
quantity of initial resource s ai stage n. Since, to begin withn =1 and s = 0,
we test 0 as the initial candidate for f,(s).

Step 6. We have now specilicd the stage . the resource s and the allocation
fa(8). Using the reward function and the optimal (n—1)-stage return, V,_i(s—
a), we compute the total return associated with the given decision in states
and we store this number in location aua.

Step 7. Compare this number with the number in cell maw, the best of
all previously tested actions for this particular state and stage. If the current
decision yields a smaller return than for some previous one, go to step 9. If
this is the best allocaiion decision tested thus far, perform step 8.

Step 8. Replace the contents of cell mrar by the greater return that has
just been stored in cell ava. Coll maxa is 1o contain the "hest action so far,”
hence we place « in cell maxa.

Step 9. Having examined the effect of thic allocation of quantity « to the
n—th stage, we now prepare to test the larger allocation a 4+ 1.

Step 10. Is this allocation greater than our resonrce s 7 1f so, this decision
is not admissible and we go to step I« 4+ | is an admissible decision,
return 1o step 6 Lo evaluate this decision. and to compare it with the previous
decisions.

Step 11. We have now compared all decisions for a specific initial resource
s. Store the maximum attainable veturn, Vi, (s), and the smallest decision
yielding this return, f,(s).

Step 12. Inerease the initial resource by 1. We now have a new problem
involving the same number of states but a greater initial resource.

Step 13. Il the new problem involves a resource greater than K, we have
completed the computation of the table ol values ol V,(s) and go on to step

14. 1f this new s is admissible, we begin the entire maximization process over
again by returnming to step 4.

Step 14. Now we have.the results, for stage » which should be stored in
cells V,(s) and f,(s).

Step 15. From this point on, we shall use the newer table, 1,(s), to compute
Var1(s).

Step 16. We now proceed to the next stage and prepare to solve a family
of problems involving the same number of states.




Step 17, 1f we have just computed Vi, (s}, » is increased by 1. If n 41
is greater than the horizon N, we stop and declare the calculation completed

and we go on to step 18, I the new n s less than or equal N, we return to
step 3.
Step 18. Now we show the vesult in form ol an Qutput.

This completes our analysis of the actual operations within the computer.




Appendix A

Used Notations and its
Meanings

(“i){v = (ay,
R, = [0, —i—oo[
R =)0, +o0f

|A| = number of clements of the ser AL

A= B, Ais defined to be B.

A =: B, B is defined to be A.

(0,1] =)0, 1]

If A is some set, then A% mecans the cartesian product 4 x A 1= {{a1,a2) :

a, @ € A}

X = expectation of random variable X.

at = max(0,2) lor 2 € IR

e o ..{waﬂm

IFor functious from B to & we used in gencral the notations , / or
: B—-G

TCE).

Note that _f'(m) denotes only the value of f al =, not the function f.




Appendix B

Flow Chart

Numerical Inputs: p probability ol occurance of an opportunity
N units of capital available
N horizon. f# - discount factor
¢ manageiment cost

1= )

lor s =01t i

Vals) = W(s)
1

noe— |

l

i — 0

ree — ()

nuea — W, (s, 0)

[

h 4
o —

I

aux — W, (s, a)

Ty — ain

P =

|

¢ — a+ |

|




|

g — 5|

Hoe—n-+1

ouTPul:
Tables:
Vi(s) and f,(s)
V(s + 1) — Vi (s)
Graphies:
V. (3} and f,.(s)




Appendix C

List of Programs

During the work we wrote numerous programs in TURBO-PASCAL VER-
SION (.0:

L. Program to calculate V,(s) and f, (). for the discrete-time discrete-state
version, with inputs: N, N, p, g d and ¢.
Files: THESIST.PAS and THESISS. PAS.

2. Program to calculate V, (s, p) and [, (s.p). Tor the discrete-time discrete-
state version, with inpuws: N, N, B d stage and c.

File: "T"HESIS2.PAS.

3. Program to calculate the values of the function KN{f#) := (1-8-¢)*—(8-p)*
where p:= 1/(1 —a), for p=0.1— 1.0 and # = 0.1~ 1.0, with input: .
File: THESIS3.PAS.

. Program to calculate the values of the Tunction A := (14 (8- do)?)/(1 —
Bq), for p=0.1—=1.0and #=0.1— 1.0, with inputs: a and dp.
File: THIESISA.PAS.

. Program to calculate V, (s, p) and f.(s,p), for p = 0.25,0.50,0.75, 1.00,
with inputs: N, N, 8., d. ¢ and slage.
File: THESISS.PAS.
). Program to calculate ¥V, (s) and [, (s), lor thie non-stationary case, discrete-
time discrete-state version, with inputs: M. K. . d. p and c.
File: THESISG.PAS.

. Program (o caleulate V(L. y) and [(i.y), lor the allocation time as rene-
wal process discrete-state version, with inputs: £, N, p, d and a.

File: THIESIST.PAS.
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