

Faculdade de Agronomia e Engenharia Florestal Departamento de Engenharia Florestal

Projecto Final

Avaliação das propriedades físico-mecânicas e energéticas de briquetes produzidos a partir da serradura de *Julbernardia globiflora* (messassa encarnada)

Autora: Paula Shelzia De Almeida

Supervisor: Prof. Dr. Andrade Fernando Egas

Maputo, Dezembro de 2024

Faculdade de Agronomia e Engenharia Florestal

Departamento de Engenharia Florestal

Avaliação das propriedades físico-mecânicas e energéticas de briquetes produzidos a partir da serradura de *Julbernardia globiflora* (messassa encarnada)

Autora: Paula Shelzia De Almeida

Projecto Final apresentado ao Departamento de Engenharia Florestal da Faculdade de Agronomia e Engenharia Florestal da Universidade Eduardo Mondlane, como parte das exigências para obtenção do grau de licenciatura em Engenharia Florestal.

Supervisor: Prof. Dr. Andrade Fernando Egas

DECLARAÇÃO DE HONRA

Eu, **Paula Shelzia De Almeida**, declaro por minha honra que este trabalho é fruto da minha própria investigação e nunca foi apresentado para a obtenção de qualquer grau académico, seja nesta ou em qualquer outra universidade. Este constitui o fruto de trabalho de campo por mim realizado e de pesquisas bibliográficas, estando as fontes utilizadas mencionadas no texto e nas referências bibliográficas.

Maputo, Dezembro de 2024

(Paula Shelzia De Almeida)

DEDICATÓRIA

Aos meus pais Almeida Sidónio Manuel e Loice Avelino Machava, que sempre acreditaram no meu potencial desde o princípio e investiram em mim. Desejo poder ter sido merecedora do esforço dedicado por vocês em todos aspectos, especialmente quanto a minha formação.

AGRADECIMENTOS

Em primeiro lugar agradeço a Deus, pelo dom da vida e por todas as bênçãos que me concedeu durante esta longa caminhada, pela saúde e força que me proporcionou para enfrentar os inúmeros desafios pelos quais passei e hoje posso dizer que conclui uma das etapas mais importantes da minha vida.

À Faculdade de Agronomia e Engenharia Florestal, pelo excelente elenco de professores que participaram no meu processo de formação.

Ao meu supervisor, Prof. Doutor Andrade Fernando Egas por ter sugerido o tema, pela confiança, dedicação, paciência que sempre o caracteriza e inestimável auxílio aquando da realização deste trabalho.

Ao Doutor Eng. Adolfo Condo, pelo valioso apoio que prestou no trabalho laboratorial na Faculdade de Engenharia da UEM .

Ao senhor Paulo Timóteo, pelo apoio durante o trabalho no laboratório e ao senhor Eduardo Mariquel pelo apoio prestado durante a produção da serradura na carpintaria.

Ao meu noivo, Eng. Arcanjo Cuamba por caminhar sempre comigo, por acreditar e confiar em mim.

Ao meu filho, Uriel Arcanjo pela presença em minha vida e pelo amor incondicional.

Aos meus irmãos, pela força e incentivo durante a minha formação e a realização do presente trabalho. Que este trabalho lhes sirva de inspiração.

Aos meus amigos e colegas do curso que estiveram presentes em todos os momentos: Carcilía Munambo, Cléusia Cardina, Odete Manguele, Karen Gwambe, Fernância Cariorio, Lídia Merine e Ângela Paula.

Aos meus colegas, Josué Victor, Lúcia Comé, Nascir Morreira, Evidelto Mudumela, Albertino Patrício, Hercílio Macamo, Ronaldo Cuambe, Marcia Zaqueu e Domingos Macandza.

A todos que aqui não foram citados, mas que directa ou indirectamente contribuíram na minha formação e na realização deste trabalho, estou profundamente agradecida!

RESUMO

A indústria madeireira é caracterizada por produzir grandes quantidades de resíduos, como a serradura, no processamento da madeira. Esses resíduos, se depositados em locais inadequados, podem causar sérios danos ao meio ambiente. Diante desse cenário é necessário estabelecer alternativas que visem mitigar os efeitos da serradura sendo a briquetagem uma alternativa. Neste contexto o presente trabalho tem como objectivo avaliar as propriedades físico-mecânicas e energéticas de briquetes produzidos a partir da serradura de Julbernardia globiflora. Para o alcance desse objectivo, foram produzidos 48 briquetes de serradura de cerne, borne e mistura (cerne + borne), numa briquetadeira de laboratório usando serradura com teor de humidade de 10%, granulometria inferior a 2 mm, temperatura de 120, 130, 140 e 150°C, pressão de 12 e 15 Mpa, tempo de compactação de 3 minutos e, tempo de resfriamento de 30 minutos. Após a sua produção os briquetes foram colocados na câmara de climatização por um período de 30 dias, e em seguida submetidas à determinação da densidade aparente e ao ensaio de resistência à tracção por compressão diametral numa máquina universal de ensaios. Os resultados mostram que o teor de cinzas da serradura de cerne, borne e mistura foi de 2,63; 2,60 e 2,62% respectivamente. Os briquetes de cerne apresentaram maior densidade aparente quando comparado com os briquetes de borne e mistura, no entanto os briquetes de borne apresentaram maior resistência a compressão. Ademais, a região do lenho não teve efeito estatisticamente significativo sobre o teor de cinzas, densidade aparente e resistência mecânica e, de forma similar, não houve diferenças estatisticamente significativas nas médias da densidade aparente e resistência mecânica para as temperaturas e pressões consideradas, com excepção da resistência mecânica dos briquetes do cerne que foram influenciadas de forma significativa pela temperatura de compactação. Concluise que os factores de qualidade inerentes à madeira e ao processo de briquetagem testados neste estudo não tiveram efeito significativo sobre a qualidade dos briquetes, com excepção da temperatura de compactação que influenciou significativamente a resistência mecânica dos briquetes.

Palavras-chave: Biomassa florestal, briquetes, propriedade energéticas, teor de cinza, compressão diametral.

ABSTRACT

The timber industry is characterized by producing large amounts of waste, such as sawdust, in wood processing. This waste, if deposited in inappropriate places, can cause serious damage to the environment. Given this scenario, it is necessary to establish alternatives that aim to mitigate the effects of sawdust, with briquetting being one alternative. In this context, the present work aims to evaluate the physical-mechanical and energetic properties of briquettes produced from Julbernardia globiflora sawdust. To achieve this objective, 48 sawdust briquettes were produced from heartwood, sapwood and a mixture (heartwood + sapwood), in a laboratory briquette machine using sawdust with a moisture content of 10%, particle size of less than 2 mm, temperature of 120, 130, 140 and 150°C, pressure of 12 and 15 Mpa, compaction time of 3 minutes and cooling time of 30 minutes. After production, the briquettes were placed in the climate chamber for a period of 30 days, and then subjected to determination of apparent density and tensile strength testing by diametrical compression in a universal testing machine. The results show that the ash content of heartwood, sapwood and mixed sawdust was 2.63; 2.60 and 2.62% respectively. The heartwood briquettes presented a higher apparent density when compared to the sapwood and mixture briquettes, however the sapwood briquettes presented a higher compressive strength. Furthermore, the wood region had no statistically significant effect on ash content, apparent density and mechanical strength and, similarly, there were no statistically significant differences in the means of apparent density and mechanical strength for the temperatures and pressures considered, with the exception the mechanical strength of the heartwood briquettes, which were significantly influenced by the compaction temperature. It is concluded that the quality factors inherent to the wood and the briquetting process tested in this study had no significant effect on the quality of the briquettes, with the exception of the compaction temperature, which significantly influenced the mechanical strength of the briquettes.

Keywords: Forest biomass, briquettes, energy properties, ash content, diametrical compression.

ÍNDICE

DECLARAÇÃO DE HONRA	i
DEDICATÓRIA	ii
AGRADECIMENTOS	iii
RESUMO	iv
1. INTRODUÇÃO	1
1.1. Contextualização	1
1.2. Problema de estudo	2
1.3. Objectivos	3
1.3.1. Objectivo geral	3
1.3.2. Objectivos específicos	3
2. REVISÃO BIBLIOGRÁFICA	4
2.1. Biomassa	4
2.1.1. Biomassa tradicional	4
2.1.2. Biomassa moderna	5
2.2. Constituição do tronco árvore	6
2.3. Composição química da madeira	7
2.3.1. Celulose	7
2.3.3. Lignina	7
2.3.4. Extrativos	8
2.4. Uso da serradura para produção de energia	9
2.5. Aspectos gerais de briquetagem	10
2.6. Vantagens e desvantagens do uso de briquetes	11
2.7. Etapas da briquetagem	12

	2.8. Fac	tores que influenciam a qualidade dos briquetes	13
	2.8.1.	Granulometria	13
	2.8.2.	Teor de humidade	13
	2.8.3.	Temperatura	14
	2.8.4.	Pressão	15
	2.8.5.	Tempo de compactação	15
	2.9. Par	âmetros de qualidade de briquetes	16
	2.9.1.	Propriedades físico-mecânicas dos briquetes	16
	2.9.1.1.	Densidade aparente	16
	2.9.1.2.	Resistência à carga de ruptura	16
	2.9.2.	Propriedades químicas e energéticas	17
	2.9.2.1.	Teor de cinzas	17
	2.9.2.2.	Teor de voláteis	18
	2.9.2.3.	Teor de carbono fixo	18
	2.9.2.4.	Poder calorífico	19
	2.9.2.5.	Densidade energética	19
	2.10. E	spécie usada	20
3.	METOI	OOLOGIA	21
	3.1. Ma	terial de estudo	21
	3.2. Car	acterização da serradura	22
	3.2.1. C	aracterização granulométrica	22
	3.2.2. D	eterminação do teor de humidade	23
	3.2.3. D	eterminação do teor de cinzas	23
	3.3. Acc	ondicionamento do material e produção de briquetes	24

	3.4. Determinação das propriedades físico-mecânicas dos briquetes	26
	3.4.1. Determinação da densidade aparente	26
	3.4.2. Determinação da resistência mecânica dos briquetes	27
	3.5. Análise de dados	28
4.	RESULTADOS E DISCUSSÃO	29
	4.1. Caracterização do material de estudo	29
	4.1.1. Granulometria	29
	4.1.2. Conteúdo de humidade do material	30
	4.1.3. Teor de Cinzas	31
	4.2. Caracterização dos briquetes produzidos	32
	4.2.1. Aparência dos briquetes produzidos	32
	4.2.2. Propriedades físico-mecânicas	33
	4.2.2.1. Densidade aparente	33
	4.2.2.2. Resistência mecânica dos briquetes	34
	4.3. Efeito da região do lenho sobre as propriedades energéticas e físico-mecânicas dos	
	briquetes da serradura de J. globiflora.	35
	4.3.1. Efeito da região do lenho sobre o teor de cinzas dos briquetes da serradura de <i>J</i> .	
	globiflora	35
	4.3.2. Efeito da região do lenho sobre a densidade aparente dos briquetes	36
	4.3.3. Efeito da região do lenho sobre a resistência mecânica dos briquetes	37
	4.4. Efeito da temperatura sobre as propriedades físico-mecânicas dos briquetes	38
	4.4.1. Efeito da temperatura sobre a densidade aparente dos briquetes.	38
	4.4.2. Efeito da temperatura de compactação sobre a resistência mecânica dos briquetes	39
	4.5. Efeito da pressão de compactação sobre as propriedades físico-mecânicas dos briquete	s 41
	4.5.1. Efeito da pressão de compactação sobre a densidade aparente	41

	4.5.2.	Efeito da pressão de compactação sobre a resistência mecânica	. 42
5.	CO	NCLUSÕES E RECOMENDAÇÕES	. 44
	5.1.	Conclusões	. 44
	5.2.	Recomendações	. 44
6.	RE	FERÊNCIA S BIBLIOGRÁFICAS	. 45
7.	AN	EXOS	. 54

LISTA DE TABELAS

Tabela 1: Comparação entre lenha e briquetes	12
Tabela 2: Plano de produção de briquetes para ensaios laboratoriais	26
Tabela 3: Distribuição granulométrica das partículas das amostras	29
Tabela 4: Conteúdo de humidade do material	30
Tabela 5: Teor de cinza das diferentes regiões do lenho.	31
Tabela 6: Teor de cinza da madeira de espécies usadas para fins energéticos	32
Tabela 7: Valores médios da densidade aparente (g.cm ⁻³) de briquetes de <i>J. gobiflora</i>	33
Tabela 8: Valores médios da resistência mecânica por compressão diametral (Mpa)	34
Tabela 9: Efeito da região do lenho no teor de cinza de serradura.	35
Tabela 10: Efeito da região do lenho na densidade aparente	36
Tabela 11: Efeito da região do lenho na resistência à compressão diametral	37
Tabela 12: Efeito da temperatura de compactação na resistência à compressão diametral	40
Tabela 13: Efeito da pressão de compactação na resistência à compressão diametral	42

LISTA DE FIGURAS

Figura 1: Consumo de energia em Moçambique no ano de 2014	5
Figura 2: Árvore de Julbernardia Globiflora	20
Figura 3: Localização geográfica da concessão florestal Levas-Flor Lda	21
Figura 4: Material usado para o estudo	22
Figura 5: Peneiradora vibratória.	22
Figura 6: Analisador de humidade	24
Figura 7: Equipamentos usados na briquetagem.	25
Figura 8: Ensaio de resistência por compressão diametral dos briquetes	27
Figura 10: Briquetes produzidos a partir de serradura de <i>Julbernardia gobiflora</i>	33

SIMBOLOGIA/ABREVIATURAS

% Percentagem

°C Grau Celsius

ACDT Arquivo Cientifico Tropical

ANOVA Análise de variância

ASTM Sociedade Americana de Ensaios e Materiais

cm Centímetro

Cm³ Centímetro Cúbico

CV Coeficiente de Variação

d Diâmetro

g Grama

h Altura

Kcal Quilocaloria

Kg Quilograma

M Massa

M ³ Metro Cúbico

MITADER Ministério da Terra Meio Ambiente e Desenvolvimento Rural

mm Milímetro

Mpa Mega pascal

N NEWTON

PCI Poder Calorifico Inferior

PCS Poder Calorifico Superior

PC Poder Calorifico

V Volume

 π pi

1. INTRODUÇÃO

1.1. Contextualização

O caminho para o desenvolvimento económico está directamente relacionado com as fontes de energia sustentáveis. Devido à emergência de uma matriz energético-ambiental e ao encarecimento dos combustíveis fósseis, há uma busca maior por fontes de energia alternativas e sustentáveis, sendo, a biomassa uma das fontes prioritárias (Dantas, 2011).

Em Moçambique, o consumo de energia de biomassa representa 80% do consumo total de energia, sendo a lenha e o carvão as principais fontes de energia doméstica (Aquino *et al.*, 2018). Ela é usada por quase a totalidade da população rural (95%), principalmente na forma de ramos e árvores secas naturalmente ou derrubados para abrir machambas e é também consumida por 75% da população urbana onde o carvão é a forma dominante de combustível lenhoso ao nível doméstico (MITADER, 2019).

A extração excessiva de árvores para combustíveis lenhosos sobretudo para a comercialização nas cidades é uma das principais causas do desmatamento e da degradação florestal em Moçambique. De acordo com MITADER (2018), a taxa anual de desmatamento no país de 2003 a 2013 foi estimado em 0,79% correspondente a 267000 ha, e de 2014 a 2016 a taxa anual de desmatamento foi de 0,36% correspondente a 86000 ha, onde a extração de lenha e carvão constituem a 4ª das 7 causas do desmatamento e da degradação florestal (CEAGRE & Winrock International, 2016). Surge assim a necessidade de encontrar mecanismos que contribuam para reverter esses altos índices de desmatamento.

A quantidade de resíduos gerados durante o processo de exploração florestal e processamento da madeira, chega a ser, em alguns casos, superior a madeira processada (Dias *et al.*, 2012). Alguns desses resíduos como a serradura com pouco potencial para produzir artigos de alto valor comercial, podem ser usados para fins energéticos e contribuir desta forma para reduzir a pressão sobre as florestas naturais (Egas e Nhantumbo, 2020).

Uma forma eficiente de usar a serradura para energia é através do processo conhecido como briquetagem que consiste na aplicação de temperaturas elevada e/ou pressão, de modo a aumentar a sua densidade energética (De Oliveira, 2013). A busca pela sustentabilidade e a promoção da

chamada economia verde, têm contribuído para ampliar o consumo, e, consequentemente, a produção de briquetes (Santos *et al.*, 2015). Os briquetes podem ser usados tanto a nível doméstico assim como a escala industrial, o que pode propiciar a redução da quantidade de lenha extraída para fins energéticos e o consumo do carvão vegetal, contribuindo desta forma para a redução do desmatamento.

A briquetagem permite optimizar as propriedades energéticas dos resíduos vegetais, obtendo um combustível com maior densidade e resistência mecânica, sendo fácil de transportar e armazenar (De Oliveira, 2013).

Os briquetes têm um poder calorífico duas vezes maior do que o da lenha, com o espaço de armazenagem reduzido. A utilização da biomassa através de briquetes pode resultar num modelo de sustentabilidade que garanta a autonomia energética de uma pequena comunidade, gerando novas fontes de renda, visto que a capacidade produtiva de uma região está intimamente ligada ao potencial energético (Alves Júnior & Santos, 2002).

1.2. Problema de estudo

Moçambique é um dos poucos países da região da África Austral que ainda mantém uma proporção considerável da sua área coberta de florestas naturais e matas remanescentes, estimada em cerca de 32 milhões de hectares, o correspondente a 40% do território nacional, (Magalhães, 2018).

O Miombo é a formação florestal mais predominante, cobrindo 2/3 da superfície florestal total (Ribeiro *et al.*, 2002) com cerca de 21 milhões de hectares, representando 62% da área florestal (Magalhães, 2018). Esta formação caracteriza-se pela abundância de espécies dos géneros *Brachystegia* e *Julbernardia* (Ribeiro *et al.*, 2002). Nessas formações as espécies *Brachystegia spiciformis* e *Julbernardia* globiflora comummente conhecidas como messassa comum e messassa encarnada respectivamente, representam a maior disponibilidade de madeira comercial no país, com cerca de 46% do volume total (Magalhães, 2018).

Como as espécies madeireiras nobres ou de primeira classe têm sido submetidas a extensa exploração, sua disponibilidade diminuiu drasticamente nas últimas décadas surgindo a necessidade crescente de racionalização do uso da madeira em território moçambicano, através de pesquisas sobre as espécies menos utilizadas e as que necessitam de cuidados maiores no seu processamento (MITADER, 2016). *Brachystegia spiciformis* e *Julbernardia globiflora* são pouco

usadas na indústria madeireira moçambicana, com volume de exploração abaixo dos 3%, mas possuem potencial devido à sua grande disponibilidade (MITADER, 2016).

Com a aprovação pelo Conselho de Ministros da Resolução N.º 23/2020, de 27 de Março - Política Florestal e Estratégia de Implementação - as espécies de madeira secundarizadas como as messassas, particularmente *Brachystegia spiciformis* e *Julbernardia globiflora* devem ser promovidas para a produção industrial da madeira de modo a contribuir para a redução da pressão sobre as espécies mais procuradas, bem como a protecção de espécies em risco de extinção (Conselho de Ministros, 2020), o que poderá resultar na geração de grande quantidade de serradura dessas espécies.

A indústria madeireira é um dos principais agentes geradores de resíduos, particularmente a serradura (Egas e Nhantumbo, 2021). A geração de grande quantidade de resíduos, pode causar sérios danos ao meio ambiente, poluir o ar através da incineração e ainda prejudicar operações em outras indústrias, devido ao espaço ocupado pela mesma (Protásio *et al.*, 2011). Diante desse cenário é necessário estabelecer alternativas que visem mitigar esses efeitos da serradura sendo a briquetagem uma alternativa. Para qualificar um determinado material como apropriado para fins energéticos, como o briquete, é necessário caracterizá-lo por meio de suas propriedades físicomecânicas e energéticas, que para a espécie em estudo estas informações são escassas.

1.3. Objectivos

1.3.1. Objectivo geral

 Avaliar as propriedades físico-mecânicas e energéticas de briquetes produzidos a partir da serradura de *Julbernardia globiflora* sob diferentes temperaturas e pressões.

1.3.2. Objectivos específicos

- Determinar as propriedades físico-mecânicas e energéticas dos briquetes produzidos a partir da serradura de *Julbernardia globiflora*;
- Avaliar a influência da região do lenho nas propriedades físico-mecânicas dos briquetes produzidos;
- Avaliar o efeito da temperatura e da pressão de compactação nas propriedades físicomecânicas dos briquetes produzidos.

2. REVISÃO BIBLIOGRÁFICA

2.1. Biomassa

Do ponto de vista de geração de energia, biomassa abrange os derivados recentes de organismos vivos utilizados como combustíveis ou para a sua produção, excluindo-se os tradicionais combustíveis fósseis, pois embora estes também sejam derivados da vida vegetal (carvão mineral) ou animal (petróleo e gás natural), são resultado de várias transformações que requerem milhões de anos para acontecerem (Benício, 2011).

Segundo McKendry (2002), a biomassa é a única fonte renovável de carbono que tem o potencial de atenuar a dependência de combustíveis fósseis e mitigar o aquecimento global, permitindo reduzir o impacto negativo frequente sobre o meio ambiente, e outras questões ambientais associadas ao uso de combustíveis fósseis.

A biomassa torna-se numa opção atraente pois possui um conteúdo térmico modesto, elevada disponibilidade, carácter renovável e a possibilidade de reduzir a emissão de gases de efeito de estufa. Pode ser classificada em dois grupos: biomassa tradicional que consiste em lenha e resíduos naturais, e biomassa moderna que compreende biocombustíveis líquidos e gasosos, briquetes e pellets (Fortes e Raimundo, 2020).

2.1.1. Biomassa tradicional

Em Moçambique, a biomassa tradicional representa a principal ou até a única fonte de energia doméstica para a maioria das famílias, sendo utilizada para fim doméstico na confecção de alimentos e no aquecimento de água. A população rural depende predominantemente da lenha, enquanto a população urbana utiliza o carvão vegetal, facto que coloca o país como um dos dez maiores produtores de carvão vegetal do mundo (Aler, 2017).

A Figura 1 indica que a energia da biomassa tradicional foi a fonte de energia mais consumida em 2014, pois 70,4% da população moçambicana depende desta para satisfazer as suas necessidades energéticas básicas, que são principalmente de carácter doméstico.

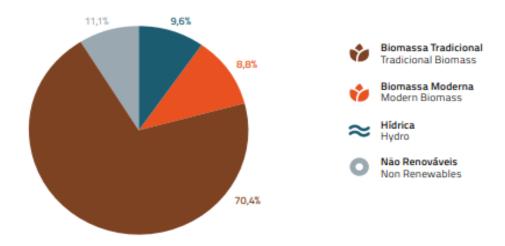


Figura 1: Consumo de energia em Moçambique no ano de 2014.

Fonte: Aler, 2017.

2.1.2. Biomassa moderna

De acordo com Fortes e Raimundo (2020), uma das grandes particularidades e vantagens da biomassa é a versatilidade na sua utilização como combustível, o que a torna única e adequada para diversas aplicações. A biomassa é considerada moderna quando utilizada em processos tecnológicos avançados e eficientes resultando em biocombustíveis gasosos, líquidos ou sólidos, que podem gerar energia térmica, podendo também gerar energia eléctrica por meio de um processo denominado cogeração (Marafon *et al.*, 2016). A cogeração pode ser definida como o processo de transformação de uma forma de energia em mais de uma forma de energia útil (Seifert, 2011). De acordo com a Figura 1, em 2014 a biomassa moderna representou apenas 8,8% da energia total consumida no país.

Os biocombustíveis líquidos e gasosos como o bioetanol e o biogás respectivamente, são fontes promissoras de bioenergia de longo prazo, com potencial para minimizar os impactos ambientais e as preocupações de segurança representadas pela dependência actual dos combustíveis fósseis, porém a sua produção em Moçambique está ainda numa fase embrionária (Fortes e Raimundo, 2020).

Nesse âmbito, a produção de briquetes, a partir da biomassa, representa um avanço na busca por fontes limpas e renováveis, alinhadas com as demandas da modernidade.

2.2. Constituição do tronco árvore

As árvores constituem uma importante fonte de energia de biomassa, razão pela qual é fundamental conhecer a sua composição para melhor aproveitamento como fonte de energia. O tronco da árvore é constituído pela casca que protege o lenho e é o veículo da seiva elaborada; o câmbio vascular que consiste numa fina e quase invisível camada de tecidos vivos e está situado entre a casca e o lenho; e o lenho formado pelo cerne e borne (Gominho, 2005).

Segundo Nogueira (2008), o cerne e o borne são formados pelos mesmos tipos de células, no entanto as do cerne já perderam a função de condução de seiva e água, e nelas são depositados extrativos que conferem a esta região uma coloração mais escura, densidade superior e durabilidade natural, características estas que agregam maior valor a esta parte da madeira em relação ao borne. No entanto, as propriedades de resistência mecânica da madeira não são alteradas pela formação de cerne, visto não existir alteração a nível da estrutura da parede celular (Kai, 1991).

As percentagens de cerne e borne na madeira apresentam variação inter e intraespecífica, e ao longo do fuste das árvores de acordo com a idade, posição da madeira na árvore, genética, taxa de crescimento, área foliar, parâmetros ambientais, como solo, clima, qualidade do local, vitalidade das árvores e maneio (Gonçalves *et al.*, 2010). De maneira geral, quanto mais velha a árvore maior a quantidade de cerne.

A quantificação do cerne e borne é feita pela análise visual directa da madeira, devido a existência de diferenças pronunciadas na cor entre o borne e o cerne, conferidas pelo acúmulo de extractivos, (Gominho, 2005). No entanto, em certas espécies, o cerne quando existe, há pouca ou quase nenhuma diferença visualmente detectada entre as cores do cerne e borne. Em tais casos, a identificação poder ser feita pela análise do PH ou observação de características anatómicas (Clarke *et al.* 1997). As tiloses também podem ser usadas para diferenciar o cerne do borne, mas apenas em espécies onde tais características estão intimamente associadas com a formação do cerne (Bamber *et al.*1985). O cerne apresenta maior densidade que borne e consequentemente maior poder calorifico devido à maior concentração de material combustível por unidade de volume.

2.3. Composição química da madeira

A composição química da madeira influência nas propriedades físico-químicas e mecânicas da madeira como produto energético. A madeira é constituída por três principais componentes macromoleculares da parede celular que são a celulose, a hemicelulose, e a lignina e por pequenas quantidades de componentes de baixo peso molecular como extractivos e substâncias minerais (Araújo,2010).

2.3.1. Celulose

A celulose é considerada o principal componente estrutural da parede celular dos vegetais, representa 50% em média da massa da madeira seca (Somerville, 2006).

A celulose é um carbohidrato constituído por uma cadeia longa e as suas moléculas estão ligadas umas das outras por ligações intermoleculares bastantes fortes que lhe confere uma resistência ao ataque químico ou biológico, e pode atingir 60% da sua massa seca (Lourinho, 2012).

2.3.2. Hemicelulose

A hemicelulose é substância matriz presente entre as microfibrilas de celulose, referente aos polímeros de polissacarídeos de baixo peso molecular, que estão fortemente associados à celulose nos tecidos da madeira (Davison *et al.*, 2013).

Trajano *et al.* (2013), afirmam que a hemicelulose se encontra em associação directa com a celulose na parede celular e funcionam como agentes de acoplamento entre a celulose e a lignina. As hemiceluloses predominam na composição das paredes celulares das fibras das folhosas, correspondendo até 20-35% da massa seca do lenho e de 18-25% do lenho das coníferas (Pedrazzi *et al.*, 2019). Segundo o mesmo autor as hemiceluloses podem ser classificadas em cinco grupos: glucouranoxilanas, galactoglucomananas, glucomananas, arabino glucouranoxilanas e arabinogalactanas.

2.3.3. Lignina

Davison et a (2013) caracteriza a lignina como a substância que confere rigidez à parede celular, por atuar como agente permanente de ligação entre as células, tornando-as capazes de resistir a

tensões mecânicas consideráveis. A lignina é um polímero tridimensional complexo de unidades de fenilpropano, completamente amorfo, que serve como material incrustante em torno das microfibrilas (Hatakeyama *et al.*, 2009).

Pedrazzi *et al.* (2019) afirmam que a lignina é derivada do metabolismo secundário da planta, através da síntese de precursores primários como o álcool cumarílico, que origina a lignina do tipo P-hidroxifenila, presente em maiores proporções nas gramíneas; o álcool coniferílico, que origina a lignina guaiacila, que predomina no lenho das coníferas; o álcool sinapílico, que origina a lignina siringila, que predomina no lenho das folhosas.

2.3.4. Extrativos

Os extractivos são considerados como compostos que não fazem parte da estrutura da parede celular vegetal, sendo solúveis em água, solventes orgânicos e volatilizados com vapor (Pedrazzi *et al.*, 2019). O conteúdo de extrativos na maioria das madeiras é baixo, geralmente em torno de 5%, porém, pode ser alto em algumas espécies de coníferas (Machado *et al.*, 2016).

Os extrativos apresentam alto teor calórico e contribuem em algumas das propriedades da madeira, tais como a cor, o odor e a durabilidade e também nas folhas e casca, tais como cor, cheiro, resistência ao ataque de agentes deterioradores, diminuição da permeabilidade, diminuição da higroscopicidade, dentre outras características (Pedrazzi *et al.*, 2019).

Os extrativos também determinam a finalidade de uso da madeira e valor de mercado, trabalhabilidade, e permitem a obtenção de uma gama de produtos não-madeireiros de grande interesse econômico (Klock *et al.*, 2005).

2.3.5. Substâncias minerais

O teor de minerais afectam negativamente o valor calórico do combustível, sendo, portanto, indesejável em qualquer tipo de combustível (Klock *et al.*, 2005). As substâncias minerais ou compostos inorgânicos da madeira consistem na sua maioria de sais de cálcio, potássio e magnésio e sais de outros elementos tais como sódio, fósforo, manganês, ferro, alumínio, cobre e zinco também podem estar presentes, porém em menor quantidade. Estes sais são essenciais à nutrição da árvore e também ficam acumulados na madeira (Machado *et al.*, 2016).

Alguns sais são formados com grupos orgânicos ácidos das hemiceluloses da parede celular que nesse caso, ocorrem como carbonatos, fosfatos, sulfatos, silicatos e oxalatos (Hilsdorf *et al.*, 2004). O conteúdo dos compostos inorgânicos na madeira é altamente variado entre e dentro das espécies, bem como com o tipo de solo e a taxa de crescimento da espécie arbórea (Klock *et al.*, 2005).

2.3.6. Implicações energéticas

A celulose e a hemicelulose são altamente oxigenados e representam a fracção menos energética da madeira com um poder calorifico de 4,184 kcal/kg (Tillman, 1978). Estes, são responsáveis no processo de combustão, pela formação da maioria dos produtos orgânicos voláteis e água, gerando fumaça e chama (Machado *et al.*, 2016).

A lignina e os extrativos são os componentes de maior densidade energética da madeira por possuírem maior teor de carbono fixo e um poder calorifico de 6,318 e 8,339kcal/kg respectivamente (Tillman, 1978). Durante o processo de combustão a lignina contribui principalmente para a produção de alcatrões, coque, alguns hidrocarbonetos e pequena quantidade de água, (Machado *et al.* 2016).

2.4. Uso da serradura para produção de energia

A utilização de resíduos de biomassa para energia é uma alternativa para agregar valor e reduzir os impactos causados pelos resíduos (Quirino, 2003). As actividades de exploração florestal e processamento de madeira são caracterizadas pela geração de grandes quantidades de resíduos e sobras como a serradura, costaneiras, resíduos do alinhamento e destopos, que reduzem o nível de aproveitamento industrial da madeira à cerca de 30% (Egas e Falcão, 2018). A serradura é o resíduo da madeira que se produz ao longo dos diferentes processos de exploração e de transformação mecânica da biomassa florestal como no abate, desrame, traçagem e serragem (Houana, 2015). O problema ambiental derivado da serradura pode ser facilmente solucionado mediante o estabelecimento de pequenas unidades industriais para o aproveitamento da serradura para fins energéticos em substituirão da lenha e do carvão e contribuir desta forma para reduzir a pressão sobre as florestas naturais (Egas e Nhantumbo, 2020).

De acordo com Egas e Nhantumbo (2020), uma forma eficiente de usar a serradura para energia é através do processo conhecido como briquetagem. A briquetagem consiste na aplicação de

temperaturas elevada e/ou pressão, de modo a aumentar a densidade energética no produto final e permite optimizar as propriedades energéticas dos resíduos vegetais, obtendo um combustível com maior densidade e resistência mecânica, sendo fácil de transportar e armazenar (Quirino, 1991). Paula *et al.* (2010) em um estudo sobre a caracterização química de resíduos lignocelulósicos visando à produção de energia constatou que a serradura possui potencial para a utilização energética.

2.5. Aspectos gerais de briquetagem

O processo de briquetagem originou-se na indústria naval dos Estados Unidos em 1848, porém não teve grande visibilidade em função da falta de interesse provocada pela grande disponibilidade de lenha e de petróleo e da pouca preocupação ambiental existente na época (Chen, 2009). Com o passar do tempo houve o encarecimento dos combustíveis fósseis e o aparecimento de inúmeros problemas ambientais, surgindo assim a necessidade de uma nova fonte de energia que contornasse todos esses problemas (Dias *et al.*, 2012).

A briquetagem é uma técnica que serve para o melhor aproveitamento dos resíduos de biomassa, consistindo num processo de compactação de material fino ou triturado sob elevadas pressões e temperaturas, o qual provoca plastificação da lignina, substância que actua como aglutinante das partículas durante a compactação (Chen, 2009).

Os resíduos da biomassa podem ser compactados pela briquetagem, desde que se atenda às especificações do processo, como por exemplo, a granulometria e o teor de humidade (Quirino, 1991). Este processo transforma um resíduo de baixa densidade em uma lenha ecológica de alta qualidade.

A baixa densidade energética da biomassa sólida, em comparação com outros combustíveis, resulta em custos elevados de transporte e armazenamento. Assim, o desenvolvimento de técnicas para aumentar a concentração de energia torna-se imprescindível (Faustino *et al.*,2019). Diante dessa realidade, tem-se buscado o reaproveitamento energético dos resíduos agro-industriais por meio da compactação da biomassa pelo processo de briquetagem, para posterior queima e produção de energia.

2.6. Vantagens e desvantagens do uso de briquetes

Os briquetes apresentam várias vantagens segundo Abreu (2005): (i) possuem maior conteúdo energético por unidade de volume se comparados ao resíduo *in natura*; (ii) geram menos cinza e fumaça, causando menor impacto ambiental que outros tipos de combustíveis; (iii) são de fácil manuseamento, transporte e armazenamento, (iv) são produzidos em tamanhos padrões melhorando a eficiência de queima e apresentam menor humidade (10 a 12%), enquanto a lenha muitas vezes possui teores acima de 30% de humidade.

A briquetagem é uma forma eficiente para concentrar a energia disponível na biomassa. Este facto é explicado pela consideração de que 1m³ de briquetes contém pelo menos quatro vezes mais energia que 1m³ de resíduos em sua forma original, levando-se em consideração a densidade a granel e o poder calorífico médio destes materiais (Abreu, 2005).

Em comparação com a lenha, o briquete possui maior densidade energética, maior rapidez na geração de temperatura e calor, proporciona redução dos custos de transporte, menor custo de manuseamento, infra-estrutura de armazenamento, movimentação, mão-de-obra e encargos sociais (Gentil 2008).

De acordo com Júnior e Pimenta (2015), o uso dos briquetes apresenta algumas desvantagens como a falta de maquinaria para a produção, falta de acesso ao mercado e falta de demanda associada a falta de conhecimento sobre o produto. Para Silva (2007), os briquetes são intolerantes a humidade, podendo desintegrar-se quando expostos a água ou submetidos a alta humidade, sendo mais exigentes no local de armazenamento.

A Tabela 1, apresenta comparação entre lenha e briquetes quando relacionados com a sua sustentabilidade para a geração de energia.

Tabela 1. Comparação entre lenha e briquetes

Indicador	Lenha	Briquete
Poder calorífico	Menor 2200 a 2500 Kcal/kg	Maior 4800 a 4900 Kcal/kg
Humidade	25 a 40%	9 a 12%
Temperatura da chama	Baixa temperatura	Alta temperatura
Dimensões	Sem padrão	Padronizadas
Áreas para armazenamento	Grandes	Pequenas
Transporte	Alto grau de dificuldade	Poucas dificuldades
Manuseio	Difícil	Fácil

Fonte: adaptado por Caires (2010).

2.7. Etapas da briquetagem

A utilização da biomassa no processo de briquetagem depende das características termoquímicas, como a composição química, granulometria, densidade, carbono fixo, teor de materiais voláteis, teor de cinza, humidade e de lignina, que definem a eficiência, o poder calorífico e o valor comercial (Fortes e Raimundo, 2020). Para De Oliveira (2013), as etapas para o processo de briquetagem, são:

- Escolha do material: esta etapa refere-se ao tipo de matéria-prima que se deseja utilizar, em função do tipo de briquete que se pretende produzir e das características do material a ser utilizado (tamanho de partículas, densidade e humidade);
- Secagem: tem por finalidade retirar a humidade dos resíduos, a fim de deixar o material com a humidade necessária para a realização do processo;
- Moagem dos resíduos: esta etapa objectiva a trituração dos resíduos, formando partículas menores. Isso facilita o processo e a acção de aglutinantes se estes forem necessários;
- Peneiramento: promove a separação das partículas geradas na moagem em granulometrias diferentes, tendo por finalidade uma selecção das partículas a serem utilizadas, e eliminação das indesejadas no processo;

- Prensagem: a prensagem proporciona resistência aos briquetes. É realizada por meio da acção de prensas que aplicam altas pressões e temperaturas a massa de resíduos e ao ligante.
 Esta etapa define a forma final do briquete, de acordo com a prensa utilizada;
- Armazenamento e embalagem: os briquetes devem ser armazenados em silos de estocagem a fim de manter um estoque intermediário entre a produção e a distribuição. Posteriormente são embalados para o consumo.

2.8. Factores que influenciam a qualidade dos briquetes

2.8.1. Granulometria

Granulometria é a caracterização das dimensões das partículas do agregado. A classificação granulométrica da biomassa é de extrema importância antes da compactação, pois o tamanho das partículas está directamente relacionado com a qualidade dos briquetes, influenciando na durabilidade e resistência dos briquetes (Viera, 2012). As partículas de menor tamanho facilitam a união das mesmas, diminuído os espaços vazios entre as partículas e proporcionando maior densidade relativa aparente (Pereira, 2009).

De acordo com Kaliyan e Morey (2009) as partículas com dimensões pequenas são interessantes pelo facto de abrangerem área maior de superfície e promoverem melhor interação. Segundo os mesmos autores, a compactação de partículas menores de materiais que contém lignina em sua constituição exige menor força durante a compressão. Entretanto, as partículas pequenas que não contêm substâncias ligantes podem requerer pressões e temperaturas muito elevadas para serem compactadas (Silva, 2007). Em partículas maiores, o processo de prensagem não produz um material bem compactado, podendo existir espaços vazios dentro da estrutura (Kaliyan e Morey, 2009).

2.8.2. Teor de humidade

Teor de humidade pode ser definido como a massa de água contida na biomassa e pode ser expressa tanto na base húmida quanto na base seca (Carneiro, 2012). Este parâmetro pode ser determinado pela diferença entre os pesos de uma amostra, antes e logo após ser submetida à secagem (Vieira, 2012).

A matéria-prima deve estar suficientemente seca para evitar fracturas no briquete devido à expansão de gases, na maioria das vezes vapor de água. Para que a aglomeração das partículas tenha sucesso, é necessário que a humidade esteja compreendida entre 8 e 15%, (Carneiro, 2012).

O teor de humidade do material desempenha um papel importante, pois influencia no processo de briquetagem da biomassa, na estabilidade dos briquetes e sua durabilidade. Durante o processo de briquetagem, o teor de humidade pode facilitar a solubilização das fibras, mas, em grande quantidade, pode vir a reduzir a densidade e a resistência mecânica do produto final (Magalhães *et al.*, 2019).

Segundo Vale (2000), o teor de humidade é um parâmetro que deve ser controlado na geração de energia, pois quanto menor o teor de humidade maior será a produção de calor por unidade de massa. A presença de humidade na biomassa faz com que o poder calorífico seja influenciado negativamente, pois parte da energia liberada é gasta na vaporização da água, e se o teor de humidade for muito alto, poderá dificultar o processo de combustão (Souza, 2014).

2.8.3. Temperatura

A temperatura de compactação exerce uma função muito relevante nas propriedades finais do produto e no consumo energético durante a compactação (Paula, 2010). A compactação em temperaturas elevadas ativa os ligantes naturais da biomassa como lipídios, lignina, amido e proteína, ou os aglutinantes adicionados à biomassa, por meio de forças de atratividades entre as partículas, dispensando, assim, o uso de ligantes adicionais na biomassa (Kaliyan e Morey, 2009).

Temperaturas elevadas evaporam parte da humidade da biomassa, melhorando o poder calorífico do produto compactado (Bhattacharya *et al.*, 1989). No entanto, estudos mostram que a temperatura máxima não deve ultrapassar os 300°C, para que se evite o risco da decomposição das componentes da biomassa (Marreiro, 2022).

Marreiro (2022) afirma que embora o aumento da temperatura tenha um impacto sobre as propriedades finais dos briquetes, essa variável está diretamente ligada aos recursos disponíveis no equipamento de briquetagem, por essa razão, o tipo de equipamento empregado na densificação da biomassa pode representar um obstáculo para o estudo dessa variável.

2.8.4. Pressão

A pressão de compactação é um dos factores mais importantes no processo da densificação da biomassa. Dias Júnior (2019), afirma que esta variável de processo normalmente não altera as características do poder calorífico do material, no entanto, tem grande influência sobre as propriedades físico-mecânicas de briquetes, bem como sobre o teor de humidade e cinzas.

Na produção industrial de briquetes, as pressões aplicadas podem atingir até 200 MPa (Lippel, 2011). A pressão é considerada elevada quando é igual ou superior a 100 MPa, intermediária para valores entre 5 e 100 MPa e baixa quando for menor do que 5 MPa (Kpalo *et al.*, 2020). Com pressões menores é possível reduzir custos operacionais com energia, e com manutenção, uma vez que o equipamento fica mais suscetível a desgaste e quebra ao utilizar elevadas pressões (Marreiro, 2022).

A densidade final do produto depende da pressão aplicada durante a compactação (Filippetto, 2008). Quanto menor a densidade do material de origem, maior a densidade aparente do produto final após a aplicação da pressão de compactação (Furtado *et al.*, 2010).

2.8.5. Tempo de compactação

O tempo de compactação refere-se ao tempo que a biomassa permanece dentro do molde enquanto é compactado pelo equipamento utilizado para a briquetagem. O tempo de compactação quando associado as demais variáveis como a presença de aglutinante, pressão e temperatura, determinam a densidade e a resistência à compressão dos briquetes (Kpalo *et al.*, 2020).

Bazargan, Rough e Mckay (2018) observaram que o tempo de prensagem não teve influência significativa sobre a resistência a tracção por compressão diametral, uma vez que, sob pressões mais elevadas, esse efeito é mínimo. No entanto, desde que seja preservada a qualidade dos briquetes, a variável tempo de compactação pode ser reduzida e proporcionar uma maior taxa de produção (Marreiro, 2022).

Sette Júnior *et al.* (2017) realizou testes para determinar para o tempo de compactação ideal, tendo observado divergências na relação tempo de compactação e seu produto final, indicando o quão particular é cada processo de briquetagem, e justificando a necessidade de uma investigação mais detalhada para essa variável de processo.

2.9. Parâmetros de qualidade de briquetes

A qualidade dos briquetes para o uso energético é geralmente medida por meio de propriedades físico-mecânicas, químicas e energéticas. Os parâmetros de qualidade de briquetes que geralmente são avaliados do ponto de vista físico-mecânico e energético incluem: Densidade aparente, a resistência à compressão, poder calorifico, o teor de humidade, teor de cinzas, teor de voláteis, teor de carbono fixo, entre outros (Brand, 2010). Em seguida são descritos de forma breve os principais parâmetros usados na caracterização da qualidade dos briquetes.

2.9.1. Propriedades físico-mecânicas dos briquetes

2.9.1.1.Densidade aparente

A densidade aparente é a razão entre a massa de uma amostra e o seu volume, incluindo a contribuição do volume vazio entre partículas (Gentil, 2008). Com a densificação dos resíduos aumenta-se a quantidade de energia gerada em relação as suas condições naturais, sendo que 1 m³ de briquete é capaz de produzir cinco vezes ou mais energia que 1 m³ de resíduo que lhe deu origem, levando-se em consideração a densidade a granel e o poder calorífico dos mesmos (Quirino, 1991).

O processo de briquetagem diminui o volume da matéria-prima, sendo característica muito importante para materiais de baixa densidade. Entretanto, materiais com densidade baixa demandam maior energia no processo de compactação e compressão do resíduo e materiais com densidade mais alta não seriam de interesse para briquetagem devido ao pouco ganho na densificação destes materiais (Quirino *et al.*, 2004).

2.9.1.2.Resistência à carga de ruptura

Resistência à carga de ruptura é um ensaio utilizado para determinar a resistência do briquete aos esforços compressivos, durante o seu armazenamento e transporte (Gentil, 2008). Este parâmetro é usado no controle de qualidade, pois é indicativo de resistência aos danos ao produto. É determinada através da aplicação de força perpendicular na lateral do corpo de teste. A região lateral do briquete é a que apresenta menor resistência aos impactos resultante da aplicação de carga (Gentil 2008).

A força requerida durante o teste está relacionada com as forças de aderência entre as partículas do material que constituem o briquete (Kaliyan e Morey, 2009). Para os mesmos autores a resistência à ruptura dos briquetes pode ser influenciada pelos seguintes factores:

- Composição da matéria-prima: A qualidade e tipo da biomassa utilizada na produção de briquetes afectam significativamente sua resistência. Por exemplo, a densidade, teor de humidade e características físicas da matéria-prima podem impactar directamente a resistência dos briquetes;
- Pressão de compactação: Pressões mais altas tendem a resultar em briquetes mais densos e resistentes;
- Temperatura e tempo de secagem: A secagem dos briquetes após a compactação pode influenciar sua resistência. Condições de secagem inadequadas podem levar à formação de fissuras ou redução da resistência mecânica;
- Aglutinantes: A adição de aditivos ou ligantes durante o processo de produção pode melhorar a resistência dos briquetes. Alguns materiais adicionados, como amido, lignina ou resinas, podem aumentar a coesão entre as partículas de biomassa;
- Tamanho das partículas: O tamanho das partículas de biomassa utilizadas na produção de briquetes pode afectar sua resistência. Partículas muito grandes ou muito pequenas podem comprometer a integridade estrutural dos briquetes.

Considerar esses factores durante o processo de produção de briquetes pode ajudar a optimizar a resistência à ruptura e melhorar a qualidade do produto final (Paula, 2010).

2.9.2. Propriedades químicas e energéticas

2.9.2.1.Teor de cinzas

As cinzas indicam o teor de impurezas presentes na madeira, mas que não sofrem combustão (Barros, 2012). As cinzas da biomassa em alta concentração diminuem o poder calorífico, e também causam a perda de energia visto que, a cinza é material de origem mineral, não-orgânico, inerte e não, e o poder calorífico depende da quantidade de material orgânico presente no combustível (Quirino, 1991).

Demirbas (2002) afirma que a biomassa com alto teor de cinzas não é uma fonte ideal para a produção de combustíveis, já que estas afectam directamente o poder calorífico da biomassa, a transferência de calor na superfície do material combustível e a difusão de oxigénio durante a combustão.

Segundo Massuque (2017), teor de cinzas varia dependendo da espécie, da quantidade de casca e pode ser elevado pela contaminação pela presença e areia na madeira. Para madeira de folhosas o teor de cinzas deve ser inferior a 5,4% (Tsoumis, 1991).

2.9.2.2.Teor de voláteis

O teor de materiais voláteis está relacionado à reactividade da biomassa à queima, ou seja, à facilidade de ignição da biomassa devido à volatilização de substâncias do material durante o aquecimento (Mckendry, 2002). Consiste nos vapores condensáveis e não condensáveis de um combustível e que são libertados durante a queima do mesmo (Nakashima *et al.*, 2014).

Os materiais voláteis são considerados poluentes perigosos quando libertados no ambiente, sendo que, alguns deles são tóxicos e cancerígenos. Portanto, a inalação desses compostos pode produzir efeitos adversos e directos à saúde humana, principalmente a exposição em concentrações elevadas e por um longo período de tempo (Frederico, 2009).

De acordo com santos (2010), elevados teores de voláteis, implicam uma maior emissão de gases durante a combustão, resultando numa queima acelerada e dificultando que altas temperaturas sejam atingidas. Por outro lado, biomassas com baixo teor de voláteis resultam em combustões lentas que podem ser consideradas incompletas e levam a liberação significante de fumaça e gases tóxicos (Nakashima *et al.*, 2014).

2.9.2.3.Teor de carbono fixo

Teor carbono fixo é a fracção da biomassa que se queima no estado sólido. O teor de carbono fixo está directamente correlacionado com a quantidade de material celulósico utilizado na composição dos briquetes, podendo ser definido como a quantidade de carbono após a retirada das cinzas e voláteis (Martins e Júnior, 2014). O teor de carbono fixo depende principalmente do teor de materiais voláteis, sendo que os teores de cinzas para briquetes são baixos. Portanto, briquetes com maior teor de voláteis têm menor teor de carbono fixo (Gentil, 2008).

O controlo do carbono fixo, é importante, pois seu efeito reflecte-se na utilização do dispositivo de queima por unidade de volume. Assim, considerando-se um determinado dispositivo de queima e as mesmas condições operacionais à medida que se aumenta o teor de carbono fixo, maior é utilização volumétrica do mesmo (Scremin, 2012).

Combustíveis com alto índice de carbono fixo apresentam queima mais lenta, resultando assim, em um maior tempo de residência nos equipamentos de queima, em comparação com outros combustíveis com menor teor de carbono fixo (Vale e Gentil, 2008).

2.9.2.4.Poder calorífico

O poder calorífico representa a quantidade de energia na forma de calor libertado durante a queima total de uma determinada quantidade de combustível, expresso em caloria por grama ou quilocaloria por quilograma, para combustíveis sólidos podendo ser avaliado o poder calorífico superior (PCS), inferior (PCI) (Quirino, 1991).

O poder calorífico é denominado superior (PCS) quando a combustão se efetua a volume constante e no qual a água formada durante o processo é condensada e o calor latente do vapor d'água não é perdido, enquanto que o poder calorífico inferior (PCI) é a quantidade de energia disponível quando não se considera o calor latente da condensação da umidade presente nos produtos de combustão (Klautau, 2008).

2.9.2.5.Densidade energética

A densidade energética ou quantidade de calor por unidade de volume é uma propriedade que avalia o desempenho da biomassa como combustível, pois resume as características físicas, químicas e térmicas (densidades, composição química e poder calorífico) e é definida como o produto entre o poder calorífico e a densidade, (Gentil, 2008).

A produção de briquetes a partir da biomassa proporciona uma maior densidade energética, resultando em uma queima mais eficiente (Marreiro, 2022). A densidade energetica tem uma relacao directamente proporcional a densidade aparente, onde os maiores valores de densidade aparente determimam os maiores valores da densidade energética (Souza, 2016).

2.10. Espécie usada

Julbernardia globiflora (Benth)

Julbernardia globiflora (Benth) é uma espécie arbórea pertencente à família Fabaceae e subfamilia Leguminosae (Caesalpiniaceae), vulgarmente conhecida como "messassa encarnada". É uma árvore pequena de até 12 m de altura, raras vezes um pouco mais alta, com copa subhorizontal, decídua, casca acinzentada, lisa nos ramos novos, no tronco e nos ramos mais velhos é rugoso, possui casca taninosa e flores melíferas (Brummitt, 2007).

A madeira nem sempre diferenciada. O borne é de cor castanho clara, o cerne em geral pequeno, às vezes apresenta o limite nítido por linha mais ou menos regular. A textura é heterogénea, apresenta camadas de crescimento distintas (Acdt, 2017). *J. globiflora* apresenta madeira dura com densidade que varia de 0,63-0,68 g/cm³, (Massuque, 2017 e Bila, 2020).

J. globiflora ocorre no mesmo tipo florestal que a espécie *B. spiciformis*, ou seja, se distribui no Zimbábue e em Moçambique, é dominante em grandes áreas de sua distribuição, ocorrendo em florestas decíduas abertas (Orwa *et al.*, 2009). É classificada como espécie de segunda classe e ocorre na maioria das províncias de Moçambique, em florestas densas, abertas, decíduas e em condições diferentes de altitude, precipitação e temperatura (Marzoli, 2007). O volume comercial estimado e disponível no país da espécie *Julbernardia globiflora* (*Benth*) é de cerca de 54.114.000 m³ (Magalhães, 2018).

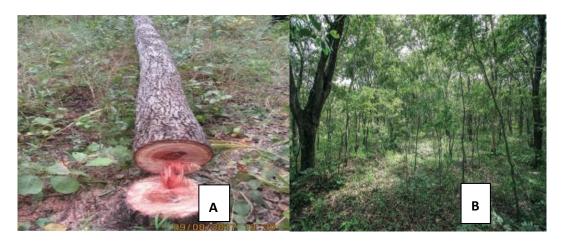


Figura 2. Julbernardia Globiflora.

Fonte (A): Bila (2017) (B): Kesel *et al.* (2017)

3. METODOLOGIA

3.1. Material de estudo

O material para o estudo consiste em serradura produzida a partir da serragem de pranchas obtidas de torretes extraídos de árvores de *Julbernardia globiflora* de floresta de Miombo da Concessão Florestal Levas-Flor, Lda. Esta empresa possui uma área concessionada de 46 239 ha e localizase nos distritos de Muanza e Cheringoma na província de Sofala, na região central de Moçambique, entre as coordenadas 18°34′49″ Sul e 34°59′59″ Leste, e 18°49′01″ Sul e 34°50′40″ Leste, e dista cerca de 150 km da cidade da Beira (Hofiço, 2021).

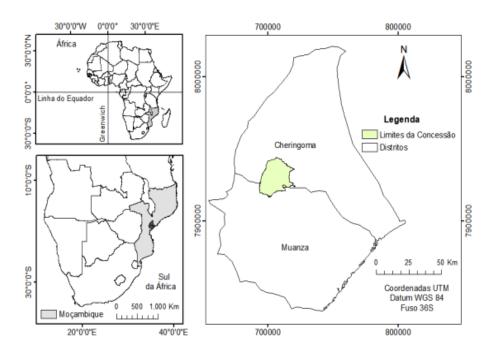


Figura 3. Localização geográfica da concessão florestal Levas-Flor Lda.

Fonte: (Hofiço, 2021).

A serragem das pranchas para a obtenção da serradura foi efectada por meio de uma de serra disco na carpintaria do CIF no Instituto de Investigação Agrária de Moçambique (IIAM). A serradura foi produzida de forma controlada com o objectivo e evitar a contaminação por areia e outras impurezas.

Figura 4. Serradura de Julbernardia globiflora; A- Serradura do borne e B- Serradura do cerne

3.2. Caracterização da serradura

Antes dos ensaios propriamente ditos, a serradura usada no estudo foi caracterizada através da análise granulométrica, conteúdo de humidade inicial e teor de cinza.

3.2.1. Caracterização granulométrica

Para esta operação, foram utilizadas 3 amostras de serradura de 100 g cada cujo peso foi determinado através de uma balança com uma precisão de 0,01 g. Em seguida as amostras foram colocadas num agitador de peneiras vibratório (Figura 3) com peneiras padronizadas de mesh com abertura de 0.5, 1, 2 e 4 mm e uma de amplitude de 60 Hz para crivar as amostras por um período de 3 minutos.

Figura 5. Peneiradora vibratória.

Depois da crivagem, as fracções retidas nas peneiras foram pesadas em uma balança analítica com precisão de 0,01 g e as percentagens das massas retidas foram calculadas dividindo-se as massas retidas nas respectivas peneiras pela massa total da amostra (Fórmula 1), onde as massas são expressas em gramas).

Fracção retida (%) =
$$\frac{massa\ retida}{massa\ total} \times 100$$
 (1)

3.2.2. Determinação do teor de humidade

Para a determinação da humidade recorreu-se a norma ASTM E-871-82 2013. Para tal pesou-se 5g da amostra numa placa de petri, colocou-se a amostra na estufa a uma temperatura de $103\pm2^{\circ}$ C por 2h, esfriou-se no dessecador até a temperatura ambiente e, em seguida pesou-se a amostra com uma balança de precisão de 0,0 1g. O exercício foi repetido até que as mudanças de peso variassem menos que 0.2%. Os ensaios foram realizados em 3 repetições, de modo a garantir a representatividade dos resultados sobre a serradura a ser usada nas etapas seguintes.

3.2.3. Determinação do teor de cinzas

Para a determinação do teor de cinza a serradura foi triturada em um moinho de facas do tipo Willey, com peneira de 0,5 mm de granulometria. Em seguida, cadinhos de porcelana vazios e as respectivas tampas a serem usados no teste foram inicialmente levados à mufla para aquecimento a uma temperatura de 600°C por 15 minutos. Após o seu arrefecimento num dessecador pesou-se os cadinhos de porcelana vazios, introduziu-se 2 g de serradura e levou-se à secagem estufa à $103\pm2^{\circ}$ C, por 24 horas. Após isso as amostras foram levadas para mufla, permanecendo a 600°C por um período de 15 horas por forma a garantir que toda matéria orgânica fosse queimada. Os cadinhos foram removidos da mufla e o seu arrefecimento foi continuado num dessecador até atingir a temperatura ambiente e em seguida pesados. Após a determinação da massa, os cadinhos foram novamente colocados na mufla por um período de 30 minutos seguido de arrefecimento no dessecador e pesagem e o exercício foi repetido até que a mudança de peso entre duas pesagens consecutivas não fosse maior que 0.2%, segundo a norma ASTM D1102-84 2013. O teor de cinza foi determinado em 5 cadinhos (5 repetições), de acordo com a norma supracitada (fórmula 2).

Teor de cinzas =
$$\frac{Pf - Pc}{m_i}$$
 (2).

Onde:

Pf- Peso do cadinho + amostra após a queima na mufla (g)

Pc = Peso do cadinho (g)

mi = massa da amostra inicial (g)

3.3. Acondicionamento do material e produção de briquetes

As amostras de serradura para a produção de briquetes foram acondicionadas a teor de humidade de 10%. Para tal, a serradura foi colocada numa estufa por um período de 30 a 90 minutos sob a temperatura de 103±2°C. A humidade do material foi controlada através de um analisador de humidade (Figura 5) e cerca de 1g da amostra foi usada para o efeito.

Figura 6. Analisador de humidade.

Para a produção dos briquetes foi da uma briquetadeira de laboratório (1) e um molde cilíndrico (10) feito de aço inoxidável de 5,3 cm de diâmetro interno, 7 cm de comprimento e paredes com 2 cm de espessura, onde a amostra foi introduzida neste molde e colocada na prensa. A placa superior (7) e a placa inferior (6) são usadas para elevar a temperatura nas posições superiores e inferiores da amostra. O macaco (4) que serve para mover a placa inferior no acto de compressão e o manómetro (5) para o controle da pressão, enquanto a camisa (8) é usada para revestir o molde e aquecer a amostra lateralmente e assim garantir a distribuição uniforme da temperatura ao redor de toda amostra. Dois termopares (9) são conectados nas proximidades das amostras (nos dois orifícios existentes no molde) para monitorar a evolução da temperatura (3).

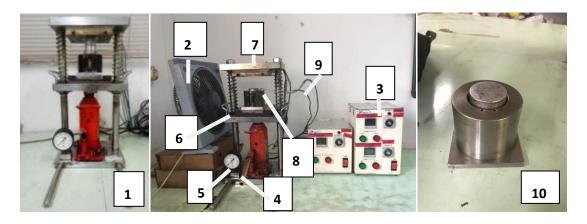


Figura 7. Prensa usada na briquetagem.

A compactação foi realizada aplicando-se uma pressão de 12 e 15 Mpa, temperatura de 120, 130, 140 e 150°C, um tempo de compactação de 3 min e, um tempo de resfriamento de 30 min. Para cada briquete, usou-se uma massa de serradura de 60 g, granulometria inferior a 2mm e teor de humidade de 10%. Após a produção, os briquetes foram transferidos para uma câmara de climatização com condições de humidade e temperatura controladas (humidade de 65% e temperatura de 20°C) por cerca de 30 dias até que apresentassem peso constante e se estabilizassem com a humidade de equilíbrio do meio, supostamente de 12%.

No total foram produzidos 48 briquetes, usando apenas serradura de cerne, borne e mistura de acordo com o plano apresentado na tabela abaixo. Os briquetes de mistura são constituídos por 27% de serradura de cerne e 73% de serradura de borne. Esta proporção é referente a quantidade de cerne e borne das secções das as arvores com mais de 30 cm de diâmetro com casca, de acordo com dados fornecidos pelo projecto REFOREST 2020-2024 implementado pela Faculdade de Agronomia e Engenharia Florestal da UEM.

Tabela 2. Plano de produção de briquetes para ensaios laboratoriais

Região do	Pressão	Temperatura (°)				
lenho	(Mpa)	120	130	140	150	Total
Corno	12	3	3	3	3	12
Cerne	15	3	3	3	3	12
Borne	12	3	3	3	3	12
Mistura	12	3	3	3	3	12
То	tal	12	12	12	12	48

3.4. Determinação das propriedades físico-mecânicas dos briquetes

3.4.1. Determinação da densidade aparente

A densidade aparente foi determinada usando a seguinte fórmula:

$$D = \frac{m}{v} \tag{3}$$

Onde:

D - Densidade aparente do briquete (g/cm3);

M - Peso do briquete (g); e

V - volume (cm3).

A massa dos briquetes foi determinada usando uma balança analítica com precisão de 0,01 gramas. Tendo em conta que os briquetes foram confeccionados em formato cilíndrico, o seu volume foi achado a partir do seu diâmetro e altura, medidos com um paquímetro.

$$V = \frac{\pi d^2 h}{4} \tag{4}$$

Onde:

 $V - Volume (cm^3);$

 Π – 3,1416;

D- Diâmetro do briquete (cm); e

E h- Altura do briquete (cm).

3.4.2. Determinação da resistência mecânica dos briquetes

A resistência mecânica dos briquetes, foi determinada numa máquina universal de ensaios da marca Testometric (modelo M500- 50AT). Os briquetes foram comprimidos contínua e progressivamente a uma velocidade de 3mm/min até a ruptura, cujos valores de resistência foram obtidos através de um software acoplado à máquina universal. O ensaio consistiu na compressão dos briquetes no sentido diametral (perpendicular ao sentido da compactação da biomassa) segundo a norma NBR 7222 (ABNT, 2011) e foi realizado para todos os briquetes produzidos.

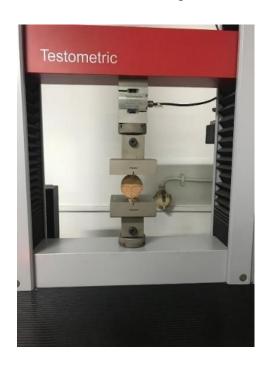


Figura 8. Ensaio de resistência por compressão diametral dos briquetes.

Durante os ensaios de resistência a compressão foram utilizadas tiras de madeira compensada com largura de 7,5mm e espessura de 3mm para auxiliar o posicionamento do corpo de prova e fazer com que a força aplicada pelo equipamento de ensaio actuasse sobre toda a geratriz do corpo de prova. De acordo com a norma NBR 7222 (ABNT, 2011), a determinação da resistência mecânica é efectuada usando a fórmula abaixo:

$$fct_{,sp} = \frac{2F}{\pi df}$$
 (5)

Onde:

fct, sp é a resistência à tracção por compressão diametral, expressa com três algarismos significativos em MPa.

F é a força máxima no ensaio, expresso em N.

D é o diâmetro de corpo de prova, expresso em mm

F é o comprimento do corpo de prova, expresso em mm

3.5. Análise de dados

Os dados foram submetidos e agrupados no Excel, onde determinou-se os parâmetros de estatística descritiva (média, desvio padrão e coeficiente de variação). Após esse processo, com auxílio do software Stata 14.0, os dados foram submetidos a análise de variâncias (ANOVA), onde a validação dos resultados foi realizada com base nos testes de especificações: Normalidade (teste de Shapiro Wilks) e Heteroskedasticidade (teste de Breusch – Pagan). Quando encontradas diferenças significativas entre tratamentos, as comparações de médias entre pares de tratamentos eram efectuadas pelo teste de Tukey (p = 5%), caso os pressupostos de Normalidade e Heteroskedasticidade não fossem violados.

4. RESULTADOS E DISCUSSÃO

4.1. Caracterização do material de estudo

4.1.1. Granulometria

A granulometria é um parâmetro de extrema importância no processo de briquetagem que influência na compactação e consequentemente na resistência mecânica do produto final (Silva *et al.*, 2015).

A figura abaixo apresenta os resultados da caracterização granulométrica da serradura de *Julbernardia globiflora* para a produção de briquetes.

Tabela 3. Distribuição granulométrica das partículas das amostras.

Tamanho das	Fração Retida %				
partículas (mm)	Cerne	Borne	Mistura		
≤ 4>2	3,58	7,22	5,42		
≤ 2 >1	23,78	16,01	20,18		
≤ 1 > 0,5	38,12	40,42	39,65		
≤ 0,5	34,53	36,35	34,75		
Total	100,00	100,00	100,00		

Analisando a distribuição granulométrica, observou-se maior quantidade na peneira com partículas de tamanho $\leq 1 > 0.5$ mm e ≤ 0.5 mm demonstrando que o material é maioritariamente composto por partículas de tamanho igual ou inferior a 1mm (cerca de 74%). Partículas de tamanho $\leq 4 > 2$ foram classificadas como rejeitos (cerca de 5%). No estudo realizado por Da Silva *et al.* (2015), os autores produziram briquetes de serradura de eucalipto por moagem e observaram uma grande proporção de partículas que passaram pela peneira de 0,5 mm. Quanto menor o tamanho da partícula melhor será a compactação, aumentando-se a densidade aparente e a resistência mecânica dos briquetes (Nakashima *et al.*, 2017).

Gonçalves *et al.* (2013), analisaram a influência de diferentes granulometrias na briquetagem, tendo sido possível a formação de briquetes em todas as granulometrias estudadas, porém o tratamento com partículas menores de 0,84 a 0,15 mm apresentou os melhores valores de resistência à compressão. Assim, no presente estudo, partículas que tiveram granulometria superior a 2 mm foram classificadas como rejeitos e não foram usadas na produção de briquetes.

4.1.2. Conteúdo de humidade do material

A humidade é um parâmetro de extrema importância para o processo de briquetagem, pois a água promove a solubilização das fibras garantindo assim a ligação entre as partículas (Oshiro, 2020). Os resultados de teor de humidade obtidos neste estudo são apresentados na Tabela 3.

Tabela 4. Conteúdo de humidade do material

Região do lenho	Humidade (%)	CV %
Cerne	10,39	9,34
Borne	11,07	7,64
Mistura	10,58	2,58

A serradura produzida apresentou humidade que varia de 10.39% a 11,07% e este valor encontrase dentro da faixa de 8 a 12% recomendada por Silva (2007). O uso de serradura com baixo teor
de humidade no processo de produção tende a produzir um briquete com baixa estabilidade
dimensional, desfazendo-se quando armazenado ou transportado (Quirino, 1991). A serradura com
alto teor de humidade pode provocar explosões pela formação de vapores de água e ocasionar o
aparecimento de rachaduras ou fissuras no produto final (Gonsalves, 2010). O alto teor humidade
pode ainda tornar o briquete susceptível ao ataque de fungos e outros microrganismos, como
insetos e bactérias (Onukak *et al.*,2017).

Para melhor comparação das propriedades dos briquetes a serem produzidos, as amostras foram estabilizadas a teores de humidade de 10%.

4.1.3. Teor de Cinzas

As cinzas influenciam a transferência do calor na superfície do material combustível, assim como na difusão de oxigênio durante a combustão (Santos, 2010). Como as cinzas não queimam, briquetes com baixos teores de cinza são recomendados (Akowuah *et al.*, 2020). Os valores na tabela abaixo correspondem aos teores de cinza de serradura produzida a partir de diferentes regiões do lenho da madeira.

Tabela 5. Teor de cinza das diferentes regiões do lenho.

Região do lenho	Teor de Cinza (%)	CV%
Cerne	2,63	18,70
Borne	2,60	6,40
Mistura	2,62	13,5

Como indicado na tabela 5, o teor de cinza da serradura de *J. globiflora* varia de 2,60 a 2,63%. Os coeficientes de variação variaram de 6,5% a 18,7% e, em conformidade com Pimentel-Gomes (1987), esses são considerados de baixa e média variabilidade respectivamente.

Os resultados obtidos neste estudo encontraram-se dentro da faixa de teor de cinza estabelecido por Tsoumis (1991) para madeira de folhosas, e que se situa entre 0,1 a 5,4%. Bila (2020), ao estudar o potencial tecnológico das messassas encontrou um teor de cinzas de 2,36% para *J. globiflora*, resultado próximo ao do presente estudo. Em um estudo sobre propriedades físicomecânicas de briquetes produzidos a partir de serradura de *Brachistegia spiciformis* Valentim (2021) obteve um teor de cinzas de 1,96%.

É possível verificar que o teor de cinzas da espécie em estudo é mais elevado (apesar de estar dentro do intervalo estabelecido para madeira) quando comparada com o de algumas espécies usadas para fins energéticos (Tabela 5). Segundo Trugilho (1996), a quantidade da cinza é fortemente relacionada com diferentes condições ambientais do crescimento ou desenvolvimento das árvores, com a genética da espécie, e com a idade das árvores. Este facto pode justificar os elevados teores de cinza encontrados para a espécie em estudo.

Tabela 6. Teor de cinza da madeira de espécies usadas para fins energéticos.

Espécie	Teor de cinzas (%)	Fontes bibliográficas
	2,62	Presente estudo
Julbernardia globiflora	2,36	Bila (2020)
	1,85	Massuque (2017)
	1,33	Bila (2020)
Brachystegia spiciformis	1,85	Massuque (2017)
	0,89	Américo (2019)
Eucalyptus grandis	0,37	Mogeia et al. (2023)
Eucalyptus camaldulensis	0,79	Mogeia (2019)

Baixos teores de cinzas da madeira são desejáveis, pois os minerais não participam nas reações de carbonização da madeira, reduzem o poder calorifico e a transferência de calor na madeira (Bustamante-García *et al.*, 2013). O teor de cinza da *J. Globiflora* (2,62%), pode afectar negativamente o poder calorifico dos briquetes e formar depósitos de cinzas sobre as grelhas ou as paredes da superfície das fornalhas o que pode causar corrosão dos metais, aumentado a periodicidade de limpezas dos cinzeiros e exigindo manutenções frequentes dos equipamentos.

4.2. Caracterização dos briquetes produzidos

4.2.1. Aparência dos briquetes produzidos

Os briquetes produzidos ao aplicar os diferentes tratamentos não observaram presença de rachaduras ou fissuras nem outro tipo de defeitos, atendendo as exigências de manuseamento, transporte e armazenamento, assim como os requisitos do mercado (Figura 10).

Figura 9. Briquetes produzidos a partir de serradura de Julbernardia globiflora.

4.2.2. Propriedades físico-mecânicas

4.2.2.1. Densidade aparente

A densidade aparente é uma propriedade física extremamente importante que define as condições de transporte e armazenamento e afecta directamente a densidade energética, ou seja, a quantidade de energia disponível por unidade de volume de briquete. A Tabela 6 apresenta valores relativos à densidade aparente dos briquetes produzidos.

Tabela 7. Valores médios da densidade aparente (g.cm⁻³) de briquetes de *J. gobiflora*

D :~ 1 1 1	D ~	Temperatura (°C)				
Região do lenho	Pressão	120	130	140	150 1,03 (8,67) 1,02 (1,41) 0,99 (3,70)	
	10	0,97	0,98	1,01	1,03	
	12	(1,60)	(2,55)	(4,00)	(8,67)	
Cerne	1.5	0,99	1,01	1,02	1,02	
	15	(0,67)	(4,75)	(1,37)	(1,41)	
Borne	10	0,95	0,96	0,98	0,99	
	12	(5,86)	(1,98)	(4,20)	(3,70)	
Mistura	12	0,97	0,97	0,97	0,98	
	12	(4,38)	(1,36)	(2,05)	(0,32)	

Observação: Os valores entre parênteses representam o coeficiente de variação da densidade aparente dos briquetes em percentagem.

Os valares de densidade aparente dos briquetes produzidos no presente trabalho, variam de 0,95 g.cm⁻³ a 1,03 g.cm⁻³. Os coeficientes de variação variam de 0,32% a 8,67%, sendo considerados de baixa variabilidade de acordo com Pimentel-Gomes (1987).

Os briquetes produzidos neste estudo estão em conformidade com os valores de densidade aparente estabelecidos na literatura. Valentim (2021), ao estudar briquetes de *B. spiciformis* obteve para densidade aparente valores entre 0,82 a 0,93 g.cm⁻³. Em trabalho conduzido por Rodrigues (2010), os briquetes produzidos com finos de madeira de eucalipto apresentaram valor médio de densidade aparente igual a 1,10 g.cm⁻³. Paula (2010), pesquisando diferentes resíduos para a produção de briquetes, obteve para os briquetes de serradura com valor de densidade de a 0,90 g.cm⁻³. Almeida *et al.* (2015) ao estudar a qualidade energética de briquetes de serradura de *Cupressus lusitanica Mill.* observaram valores de densidade aparente entre 1 e 1,10 g.cm⁻³.

4.2.2.2. Resistência mecânica dos briquetes

A resistência mecânica pode ser interpretada como a força máxima que um corpo pode suportar antes da ruptura durante o armazenamento, pois estes são constantemente submetidos aos impactos, quedas, abrasões e compressões, sendo um parâmetro importante para analisar a viabilidade da produção de briquetes (Padilha *et al.*, 2016). A Tabela 7 apresenta valores relativos à resistência mecânica por compressão diametral dos briquetes produzidos.

Tabela 8: Valores médios da resistência mecânica por compressão diametral (Mpa) dos briquetes.

Região do	Pressão	Temperatura (°C)					
lenho	(Mpa)	120	130	140	150		
Cerne	12	1,38 (24,66)	1,43 (29,21)	2,12 (14,51)	2,30 (8,92)		
	15	1,70 (4,84)	2,11 (24,03)	2,17 (1,08)	2,32 (8,03)		
Borne	12	2,44 (13,04)	2,65 (6,29)	2,68 (21,16)	3,14 (7,04)		
Mistura	12	2,17 (8,96)	2,20 (20,46)	2,32 (2,45)	2,45 (15,17)		

Observação: Os valores entre parênteses representam o coeficiente de variação da resistência mecânica por compressão diametral dos briquetes em percentagem.

A resistência mecânica dos briquetes varia de 1,38 a 3,14 Mpa. Os coeficientes de variação variam de 1,08 a 29,1% sendo considerados de baixa e média e alta variabilidade.

Os briquetes produzidos neste estudo apresentaram resistência mecânica comparável ou superior aos valores da literatura para briquetes de espécies folhosas tropicais. Manjate (2023) ao caracterizar briquetes de biomassa florestal obteve 2,40 e 2,92 Mpa para briquetes confeccionados com serradura de Chanfuta e Umbila respectivamente. Silva *et al.* (2015) ao caracterizar biomassas para briquetagem sem aquecimento observaram valores de resistência mecânica iguais a 1,22 Mpa para serradura de Eucalipto. A alta resistência mecânica dos briquetes produzidos a partir de serradura de madeira é atribuída em parte à presença de lignina nas partículas de serradura.

4.3. Efeito da região do lenho sobre as propriedades energéticas e físico-mecânicas dos briquetes da serradura de *J. globiflora*.

4.3.1. Efeito da região do lenho sobre o teor de cinzas dos briquetes da serradura de *J. globiflora*.

A Tabela 8 apresenta valores médios do teor de cinzas da serradura de *Julbernardia globiflora* em função da região do lenho. As amostras do cerne apresentaram maior valor médio com cerca de 2,63%. Por outro lado, o menor valor médio do teor de cinzas observou-se em amostras de borne com cerca de 2,60%.

Tabela 9. Efeito da região do lenho sobre teor de cinza da serradura.

Região do lenho	Teor de cinza %
Cerne	2,63
Borne	2,60
Mistura	2,62
Valor do p	0,99

Observação: p≥0,05 – as médias do teor de cinzas não diferem estatisticamente entre si a um nível de 5% de significância.

Os resultados da ANOVA (anexo 1) mostram que não houve evidência suficientes que mostrem que as médias do cerne, borne e mistura são diferentes entre si para teores de cinza (p = 0.99).

O teor de cinzas foi maior para amostras do cerne em relação as amostras de borne e mistura. Essa tendência também foi verificada por Bila (2020) que teve 3,51; 2,14 e 2,36% para madeira de cerne, borne e mistura respectivamente. Mogeia (2023) ao avaliar a variação do teor de cinzas de madeira em clones *de Eucalyptus grandis* observou um comportamento diferente, onde a região do cerne apresentava um menor teor de cinzas. Isto porque há uma relação de proporcionalidade inversa entre teor de cinzas e diâmetro do lúmen celular, indicando aumento do teor de cinzas para madeiras com pequeno lúmen e maior densidade (Santos, 2010).

4.3.2. Efeito da região do lenho sobre a densidade aparente dos briquetes

O efeito da região do lenho na densidade aparente foi analisado para as temperaturas de 120, 130, 140 e 150°C, pressão de compactação de 12Mpa, através da análise de variância.

Tabela 10. Efeito da região do lenho sobre a densidade aparente dos briquetes de *J. globiflora* (g.cm⁻³)

Região do	Temperatura (°C)					
lenho	120	130	140	150		
Cerne	0,97	0,98	1,01	1,03		
Borne	0,95	0,96	0,98	0,99		
Mistura	0,97	0,97	0,97	0,98		
Valor de p	0,78	0,35	0,50	0,68		

Observação: p≥0,05 – as médias da densidade aparente não diferem estatisticamente entre si a um nível de 5% de significância.

Os resultados da Tabela 9 mostram que não houve diferença estatisticamente significativa para as amostras de cerne, borne e mistura para a densidade aparente. Não obstante, os briquetes produzidos a partir do cerne apresentaram maior densidade aparente para todas as temperaturas testadas, em relação aos produzidos a partir da mistura (cerne e borne) em cerca de 2,5% e aos confeccionados de serradura do borne, em cerca 3%,, o que está em conformidade com os resultados encontrados por Ferreira (2019) que ao avaliar os briquetes de cerne e de borne de

Schizolobium parahyba var. amazonicum, observou que os briquetes de cerne apresentavam maior densidade aparente.

A densidade aparente maior é desejável, uma vez que existe uma relação directamente proporcional entre a densidade aparente e a densidade energética do briquete, onde a medida que aumenta a densidade aparente também se incrementa a densidade energética (De Sousa e Do Vale, 2016). Daí que, os briquetes de cerne por apresentarem os maiores valores médios de densidade aparente, espera-se a mesma tendência para a densidade enérgica comparativamente aos briquetes de mistura e de borne.

4.3.3. Efeito da região do lenho sobre a resistência mecânica dos briquetes

O efeito da região do lenho sobre a resistência à compressão diametral foi analisado para as temperaturas de 120, 130, 140 e 150°C, pressão de compactação de 12 Mpa através da análise de variância (Tabela 11).

Tabela 11. Efeito da região do lenho sobre resistência à compressão diametral de briquetes de J. globiflora (Mpa).

Dagião do lanho	Temperatura (°C)					
Região do lenho	120	130	140	150		
Cerne	1,38	1,43 b	2,12	2,30		
Borne	2,44	2,65 a	2,68	3,14		
Mistura	2,17	2,20 a	2,32	2,45		
Valor de p	0,13	0,01	0,07	0,09		

Observação: p≥0,05 – as médias da resistência à compressão diametral não diferem estatisticamente entre si a um nível de 5% de significância. Médias ao longo da mesma coluna seguidas pela mesma letra não diferem estatisticamente entre si pelo teste Tukey a 5% de nível de significância.

Os resultados da análise de variância mostram que não houve diferença estatisticamente significativa em briquetes das amostras de cerne, borne e mistura quanto a resistência à compreensão diametral para todas as temperaturas com exceção da temperatura de 130°C.

Apesar de não haver diferença significativa os briquetes produzidos a partir do borne apresentaram de forma consistente maior resistência mecânica para todas as temperaturas testadas, em relação aos produzidos a partir da mistura (cerne e borne) em cerca de 15% e aos confeccionados de serradura do cerne, em cerca 34%, resultados que diferem dos valores encontrados por Ferreira (2019) que ao produzir briquetes de cerne e de borne de *Schizolobium parahyba* var. amazonicum, observou maior resistência mecânica para briquetes de cerne. Estes resultados podem ser devidos a densidade básica da madeira que é maior no cerne (0,70 g.cm⁻³) em relação ao borne (0,67 g.cm⁻³), (Mussana, 2018). A densidade básica influencia diretamente na razão na razão de compactação que é a relação entre a densidade do material compactado e a densidade da madeira (Iwakiri, 2005). Madeiras com densidade mais baixa oferecem razão de compactação mais alta e por conseguinte maior resistência mecânica do produto compactado (Kelly, 1977).

Não obstante as diferenças reportadas acima, os resultados da análise de variância mostram que não houve diferença estatisticamente significativa em briquetes das amostras de cerne, borne e mistura quanto a resistência à compreensão diametral para todas as temperaturas com exceção da temperatura de 130° C.

Segundo Quirino (1991) a resistência do briquete à ruptura pela compressão possui boas correlações lineares com o teor de carbono fixo e com o teor de cinzas, sugerindo-se que deve haver aumento de resistência do briquete com redução do teor de cinzas e, consequentemente, aumento do teor de carbono fixo. Esse facto secunda os resultados obtidos no presente estudo onde os briquetes de borne apresentam menor teor de cinza e uma maior resistência mecânica.

4.4. Efeito da temperatura sobre as propriedades físico-mecânicas dos briquetes

4.4.1. Efeito da temperatura sobre a densidade aparente dos briquetes.

O efeito da temperatura de compactação na densidade aparente foi analisado para as regiões do cerne, borne e mistura e para a pressão de compactação de 12Mpa através da análise de variância.

Tabela 12. Efeito da temperatura de compactação sobre a densidade aparente (Mpa).

Região do lenho		Temperatura (°C)					
	120	130	140	150			
Cerne	0,97	0,98	1,01	1,03	0,73		
Borne	0,95	0,96	0,98	0,99	0,64		
Mistura	0,97	0,97	0,97	0,98	0,98		

Observação: $p \ge 0.05$ – as médias da densidade aparente não diferem estatisticamente entre si a um nível de 5% de significância.

Os resultados mostram que não houve diferenças estatisticamente significativas paras médias das temperaturas nos briquetes de cerne, borne e mistura. Entretanto, é possível verificar uma tendência do aumento da densidade aparente com a elevação da temperatura. Júnior (2015) ao produzir briquetes de Bambu e serradura de madeira sob as temperaturas 120, 130 e 140°C, verificou que o aumento da temperatura favoreceu a qualidade dos briquetes em termos de densidade aparente. Souza (2016) ao avaliar o efeito das temperaturas de 130 e 200°C na compactação de briquetes de biomassa lignocelulósica verificou que os briquetes produzidos a temperatura de 200°C apresentavam maior densidade aparente.

4.4.2. Efeito da temperatura de compactação sobre a resistência mecânica dos briquetes

O efeito da temperatura de compactação na resistência à compressão diametral foi analisado para as regiões do cerne, borne e mistura através da análise de variância.

Tabela 13: Efeito da temperatura de compactação sobre a resistência à compressão diametral de briquetes de *J. globiflora* (Mpa).

Dagião do lanho		Valor de			
Região do lenho	120	130	140	150	p
Cerne	1,38 a	1,43 ab	2,12 ab	2,30 b	0,02
Borne	2,44	2,65	2,68	3,14	0,46
Mistura	2,17	2,20	2,32	2,45	0,80

Observação: p≥0,05 – as médias da resistência por compressão diametral não diferem estatisticamente entre si a um nível de 5% de significância. Médias ao longo da mesma linha seguidas pela mesma letra não diferem estatisticamente entre si pelo teste Tukey a 5% de nível de significância.

Os resultados mostram que não houve diferenças estatisticamente significativas das médias da resistência mecânica para as temperaturas consideradas nos briquetes de borne e mistura, apesar de se observar um aumento da resistência dos briquetes com o incremento da temperatura. Entretanto, para os briquetes do cerne houve evidências de haver diferença estatisticamente significativa entre os valores de resistência para as diferentes temperaturas, observando-se um aumento significativo da resistência dos briquetes do cerne com o aumento da temperatura. Os briquetes produzidos a temperatura de 150°C apresentaram o maior valor médio de resistência mecânica, diferindo estatisticamente com a resistência dos briquetes produzidos com a temperatura de 120° C. Ferreira (2019) ao trabalhar com temperaturas de 100, 130 e 160 °C na produção de briquetes de cerne e de borne de *Schizolobium parahyba* var. *amazonicum*, observou que os briquetes de cerne produzidos a temperatura de 160 °C apresentavam maior resistência mecânica.

Elevadas temperaturas promovem o amolecimento da lignina contida na biomassa, fazendo com que as partículas se adiram mais umas às outras. De uma forma geral, a lignina para os resíduos de madeira tem uma temperatura de amolecimento em torno de 140 °C (Karunanithy *et al.*, 2012), justificando os resultados obtidos.

4.5. Efeito da pressão de compactação sobre as propriedades físico-mecânicas dos briquetes

4.5.1. Efeito da pressão de compactação sobre a densidade aparente

O efeito da pressão sobre a densidade aparente foi analisado para os briquetes de cerne para as temperaturas de 120, 130, 140 e 150°C através da análise de variância.

Tabela 14: Efeito da pressão de compactação na densidade aparente dos briquetes (Mpa)

Pressão de	Temperatura (°C)						
compactação	120	130	140	150			
12	0,97	0,98	1,01	1,03			
15	0,99	1,01	1,02	1,02			
Valor de p	0,18	0,41	0,76	0,86			

Observação: $p \ge 0.05$ – as médias da densidade aparente não diferem estatisticamente entre si a um nível de 5% de significância.

Os resultados mostram que não houve diferenças estatisticamente significativas paras as pressões de compactação em todas as temperaturas. Analisando os resultados das pressões aplicadas na produção de briquetes de cerne, observa-se uma tendência de a densidade aparente aumentar com o aumento da pressão, tendo sido observados maiores valores médios para a pressão de 15 Mpa, com excepção da temperatura de 150° C

Sampaio *et al* (2010), ao estudar parâmetros de produção de briquetes de *Eucalyptus sp.* obtiveram valores de densidade de 1,11; 1,15 e 1,17 g/cm⁻³ para as pressões de 70,3; 105,4 e 140,6 kg/cm² respectivamente, observando uma tendência de aumento de densidade com a elevação da pressão. Entretanto, Furtado *et al* (2010), trabalhando com diferentes matérias-primas sendo uma delas a serradura, com pressões de 65, 95 e 130 bar, observaram que o aumento da pressão de compactação não afetou significativamente a densidade a densidade do briquete.

4.5.2. Efeito da pressão de compactação sobre a resistência mecânica

O efeito da pressão sobre a resistência à tracção por compressão diametral foi analisado apenas para os briquetes de cerne para as temperaturas de 120, 130, 140 e 150°C através da análise de variância.

Tabela 15. Efeito da pressão de compactação na resistência à compressão diametral dos briquetes (Mpa).

Pressão	Temperatura (°C)						
(Mpa)	120	130	140	150			
12	1,38	1,43	2,12	2,30			
15	1,70	2,11	2,17	2,32			
Valor de p	0,19	0,15	0,79	0,90			

Observação: p≥0,05 – as médias da resistência à compressão diametral não diferem estatisticamente entre si a um nível de 5% de significância.

Os resultados mostram que não houve diferenças estatisticamente significativas paras as pressões de compactação em todas as temperaturas, no entanto verifica-se uma tendência de aumento da resistência mecânica com a elevação da pressão, tendo os briquetes produzidos a pressão se 15 Mpa apresentado maiores valores médios de resistência mecânica em todas as temperaturas. Esta tendência está em conformidade com o observado por Freitas *et al.* (2016), que ao produzir briquetes de resíduos madeireiros sob pressões de 6,89; 8,62 e 10,34 Mpa observaram valores de carga de ruptura iguais a 12,06; 12,75 e 13,93 Mpa respectivamente.

4.6. Aplicabilidade dos resultados obtidos

A utilização de serradura de *Julbernardia globiflora* mostra-se vantajosa para a produção de briquetes, apresentando valores de teores de cinza dentro do intervalo recomendado demonstrando seu potencial energético.

Para a produção de briquetes de *Julbernardia globiflora* a temperatura mais alta (150°C) apresentou os melhores resultados por promover o amolecimento da lignina que age como aglutinante, pois elevadas temperaturas promovem o amolecimento da lignina contida na

biomassa, fazendo com que as partículas se adiram mais umas às outras. A pressão de compactação de 12 Mpa mostrou-se mais adequada, pois não mostrou diferença estatisticamente significativa com a pressão de 15Mpa e demanda um menor dispêndio de energia com resultados satisfatórios.

Desta forma, os briquetes de serradura de *Julbernardia globiflora* podem ser utilizados como substitutos directos da lenha em padarias, pizzarias, incluindo no uso doméstico para a confecção de alimentos.

5. CONCLUSÕES E RECOMENDAÇÕES

5.1. Conclusões

Com base nos resultados obtidos e sua discussão, conclui-se que:

- Os valores de teores de cinza, densidade aparente e resistência mecânica à compressão diametral dos briquetes produzidos a partir de serradura das regiões do cerne e borne de *J.* globiflora encontram-se dentro do intervalo referido pela literatura sobre produção de briquetes de serradura de madeira.
- De forma geral, a região do lenho não teve efeito significativo sobre o teor de cinzas, densidade aparente e resistência mecânica dos briquetes produzidos.
- A pressão de compactação não teve efeito significativo sobre a densidade aparente e resistência mecânica dos briquetes produzidos.
- A temperatura de compactação teve efeito significativo sobre a resistência mecânica dos briquetes produzidos a partir de serradura do cerne.
- Os briquetes produzidos a temperatura de 150°C e pressão 12Mpa apresentaram os melhores resultados para a densidade aparente e resistência mecânica.

5.2. Recomendações

- Prosseguir com pesquisa sobre briquetes de serradura de *Julbernardia globiflora* com vista a determinar os teores de materiais voláteis, carbono fixo e poder calorifico para as regiões de cerne e borne;
- Determinar o índice de combustão de briquetes de cerne, borne e mistura de *Julbernardia* globiflora de modo a avaliar a sua eficiência energética;
- Realizar um estudo de viabilidade técnica e econômica de uma unidade industrial vocacionada a produção de briquetes de biomassa lenhosa.

6. REFERÊNCIA S BIBLIOGRÁFICAS

- ABNT (2011). NBR 7222: Argamassa e concreto: determinação da resistência à tração por compressão diametral de corpos-de-prova cilíndricos: método de ensaio. Rio de Janeiro.
- Abreu, P. H. F. (2005). <u>Formas de aproveitamento do resíduo da madeira</u>. Monografia. Universidade Estadual de Maringá, Maringá, PR. p.46.
- Aler (2017). <u>Energias renováveis em Moçambique: Relatório Nacional do ponto de situação, Associação Lusófona de Energias Renováveis, 2. ed., Maputo.</u>
- Alves Júnior, F. T. & Santos, G. A. (2002). <u>Potencial de geração de biomassa para briquetagem e o perfil do mercado consumidor deste insumo na região do Cariri-CE</u>. FUPEF, Curitiba.
- Américo, H. A. R. (2019). <u>Determinação da potencialidade energética da madeira e do carvão vegetal produzido a partir de espécies nativas na província da Zambézia</u>.
 Dissertação de Mestrado. FAEF. Universidade Eduardo Mondlane. Maputo-Moçambique.
- Aquino, A.; Lim C.; Kaechele K.; e Taquidir, M. (2018). <u>Notas sobre a Floresta em Moçambique</u>. Grupo Banco Mundial e Sweden Sverige. Maputo.
- Araújo, S. O. (2010). <u>Propriedades de madeiras termoretificadas</u>. Viçosa, Minas Gerais. p.
 93.
- Arquivo Cientifico Tropical (ACTD). Digital repositor. (2017). <u>Julbernardia globiflora</u>.
 Disponível em: http://actd.iict.pt/view/actd:XYLD0067.
- ASTM Standard D1102-84 (2013), <u>Standard test method for ash in wood</u>, Philadelphia, USA: American Society for Testing and Materials.
- Barros, L. O. (2012). <u>Densidade energética de briquetes produzidos a partir de resíduos</u> agrícolas. Monografia (Engenharia Florestal), Brasilia.
- Benefício, E. L. (2011). <u>Utilização de Resíduo Celulósico na Composição de Briquetes de Finos de Carvão Vegetal</u>, Dissertação (Mestrado em Ciências Ambientais e Florestais), Universidade Federal Rural do Rio de Janeiro, Seropédica.
- Bila, N. F. (2020). <u>Potencial tecnológico de madeiras de Brachystegia spiciformis e</u>
 <u>Julbernardia globiflora para fabricação de móveis e molduras em Moçambique</u>. Tese
 (Doutorado em Engenharia Florestal). Curitiba-PR.

- Brand, M. A.; Junior, A. L. B.; Nones, D. L.; Gaa, A. Z. N. (2019). <u>Potential of bamboo</u> species for the production of briquettes. Pesquisa agropecuária tropical. Brasil.
- Brummitt, R.K., Chikuni, A.C., Lock, J.M.; Polhill, R.M. (2017). <u>Leguminosae Subfamily</u>
 <u>Caesalpinioideae</u>. Flora Zambesiaca, v. 3, n o 2, p.81 83.
- Bustamante-García, V.; Carrillo-Parra, A.; Gonzalez-Rodriguez, H.; Ramírez-Lozano, R.
 G.; Corral-Rivas, J. J. & Garza-Ocanas, F. (2013). <u>Evaluation of a charcoal production process from forest residues of Quercus sideroxyla Humb.</u>, & <u>Bonpl. in a Brazilian beehive kiln</u>. Industrial Crops and Products. p.169-174.
- Caires, R. R. (2010). <u>Briquetagem de resíduos biomassa</u>. Universidade Estadual de Campinas Unicamp. campinas.
- Carneiro, A. de C. O. (2012) Aproveitamento <u>de resíduos agrícolas e florestais para produção de briquetes para geração de energia</u>. Viçosa.
- Ceagre & Winrock International. (2016). <u>Agentes e causas de desmatamento e degradação</u> <u>florestal em Moçambique</u>. Maputo, Moçambique.
- Chen, L.; Xing, L.; Hana, L. (2009). <u>Renewable energy from agro-residues in China: solid biofuels and biomass briquetting technology</u>, <u>Renewable and Sustainable Energy Review</u>, Oxford, U.K, v.13, n. 9, p. 2689-2695.
- Clarke C. R. E.; Garbutt D. C. F.; Pearce J. (1997). <u>Growth and wood properties of provenances and tree of nine Eucalypt species.</u>
- Da Silva, C. A. 2007. <u>Estudo técnico-económico da compactação de resíduos madeireiros</u>
 <u>para fins energéticos</u>. <u>Dissertação</u> (Mestrado em Planeamento de Sistemas Energéticos) Faculdade de Engenharia Mecânica, Universidade Estadual de Campinas, Campinas.
- Dantas, W.; Santos D. (2011). <u>Energia de biomassa, uma solução brasileira.</u> Universidade Estadual do Maringa. Brasil.
- Davison, B. H.; Parks, J.; Davis, M. F.; & Donohoe, B. S. (2013). <u>Plant cell walls: basics of structure, chemistry, accessibility and the influence on conversion</u>. Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, p.23-38.
- De Oliveira, R. R. L. (2013). <u>Moldagem de briquetes com finos de carvão vegetal aglutinados com parafina: caracterização de algumas propriedades</u>. Ciências dos Materiais, Universidade Federal de São, Sorocaba- SP.

- De Sousa, F.; Do Vale, A, T. (2016). <u>Densidade energética de briquetes de biomassa lignocelulosica e sua relação com os parâmetros de briquetagem</u>. Universidade de Brasilia.
- Demirbas, A. (2002), <u>Relationships between heating value and lignin, moisture, ash and extractive contents of biomass fuels, Energy, Exploration & Exploitation, v. 20, p.105-111.</u>
- Dias, J. M. C.; De Sousa, D. T.; Braga, M.; Onoyama, M. M.; Miranda, C. H. B.; Barbosa, P. F. D.; Rocha, J. D. (2012). <u>Produção de briquetes e péletes a partir de resíduos agrícolas agroindustriais e florestais.</u> EMBRAPA AGORENERGIA., DF: Ministério da Agricultura, Pecuária e Abastecimento. Brasília.
- Egas, A.; Falcão, M. (2018). <u>Cadeia de Valor da Madeira da Floresta nativa: Diagnóstico da situação actual.</u> Projecto, Maputo, Moçambique.
- Egas, A.; Nhantumbo, I. (2020). <u>Proposta de modelo para o desenvolvimento da indústria</u> florestal. Projecto, Maputo.
- Faustino, F. C.; Santana júnior, J. A.; Cerqueira, D. A.; Ataíde, C. H.; Cardoso, C.R. (2019). avaliação do Potencial Pirolítico dos Resíduos Agroindustriais de Arroz e Milho, Rev. Virtual Quim., v. 11, n. 6, p. 1882-1893.
- Fernandez, B. O.; Gonçalves, B. F.; Pereira, A. C. C.; Hansted, A. L. S.; Pádua, F. A.; DA Róz, A. L.; Yamaji, F. M. (2017). Características Mecânicas e Energéticas de Briquetes
 Produzidos a partir de Diferentes Tipos de Biomassa, Rev. Virtual Quim. v. 9, n.1, p. 29-38
- Ferreira, V. R. S.; Cademartori, P. H. G.; Lima, E. A.; Ferraz, F. A.; Aguiar, O. J. R.; Silva,
 D. A. (2019). <u>Produção e avaliação de briquetes de Schizolobium parahyba var.</u>
 <u>amazonicum (Huber ex Ducke) Barneby</u>. Scienta Forestalis.
- Fortes, A. G.; Raimundo, B. (2020). <u>Bioenergia em Moçambique: tecnologias de produção</u>, <u>uso e aspetos sustentáveis</u>, Revista Desenvolvimento Socioeconômico em debate, v.6, n.1, p. 60-77.
- Freitas, A. (2016) <u>Efeito da pressão e do tempo de compactação nas propriedades dos</u>
 briquetes de resíduos madeireiros de parica. Nativa, V. 4.
- Furtado, T. S.; Valin, M.;Brand, M. A.; Bellote, A. F. J. (2010). <u>Variaveis do processo de briquetagem e qualidade de briquetes de biomassa florestal</u>. Pesquisa brasileira, Colombo, V. 30, n. 62, p. 101-106.

- Gentil, L.V. B. (2008). <u>Tecnologia e economia do briquete de madeira</u>. Tese (Doutorado em Engenharia Florestal) Departamento de Engenharia Florestal-Faculdade de Tecnologia, Universidade Federal de Brasília, Brasília.
- Gomide, J. L. (s.d.). Estrutura Anatômica da Madeira e Ultraestrutura da Fibra.
- Gominho, J.; Knapic, S.; Pereira, H. (2005). <u>Cerne e borne Factores de variação da</u> qualidade tecnológica das árvores.
- Gonçalves, F. B.; YamajI, F. M.; Fernandez, B. O.; Róz, A. L.; Floriano, F. S. (2013).
 <u>Caracterização e comparação entre diferentes granulometrias de serragem de Eucalyptus grandis para confecção de briquetes</u>. Revista Instituto Florestal.
- Gonçalves, F. G.; Oliveira, J. T. S.; Silva, G. F.; Nappo, M. E.; Filho, M. T. (2010)
 Parâmetros dendrométricos e correlações com propriedades tecnológicas em um híbrido clonal de *Eucalyptus urophylla x Eucalyptus grandis*. Revista Árvore, Viçosa, v. 34, n. 5, p. 947-959.
- Gonçalves, J. E. (2010). <u>Avaliação energética e ambiental de briquetes produzidos com rejeitos de resíduos sólidos urbanos e madeira de *Eucalyptus grandis*. 2010. 104 f. Tese (Doutorado em Agronomia- Energia da Agricultura) Universidade Estadual PaulistaFaculdade de Ciências Agronómicas, Botucatu SP.
 </u>
- Hatakeyama, H. & Hatakeyama, T. (2009). <u>Lignin structure, properties, and applications</u>. In Biopolymers, p.63.
- Hilsdorf, J. W; Barros, N. D.; Tassinari, C. A.; Costa, I. (2004) Química tecnológica. São Paulo: Thomson.
- Hofiço, N.; dos Santos, A. (2021). <u>Potencial De Regeneração Natural E Crescimento De</u>
 <u>Millettia stuhlmannii Taub</u>. Em Floresta De Miombo Comosubsídio Para O Manejo
 Sustentável.p. 122.
- Houana, I. M. (2015). O papel da educação ambiental na promoção do uso de resíduos de serração e carpintaria como combustíveis: um estudo de caso do Distrito Municipal KaMavota em Maputo. Universidade Eduardo Mondlane. Maputo.
- Júnior, D. S. C.; Pimenta, A. S. 2015. <u>Qualidade de briquetes produzidos a partir de resíduos de bambu e serragem de madeira.</u> Universidade Federal do Rio Grande do Norte. Macaíba.

- Kai, Y. (1991). <u>Chemistry of extractives</u>. In D. N.-S. Hon e N. Shiraishi eds. Wood and cellulosisc chemistry. New York. p. 215-251
- Kaliyan, K.; Morey, R. V. (2009). <u>Factors affecting strength and durability of densified biomass products</u>. Biomass e Bioenergy. v. 33, n. 3. p. 337-359.
- Kelly, M. W. (1977). <u>A critical literature review of relationship between processing parameters and phisical properties of particle board. General Technical FPL-10. USDA.</u>
- Kesel, A.; Kasongo, B.; Degreef, J. (2017). <u>Champignons comestibles du Haut-Katanga</u>
 (R.D. Congo). ABC Taxa. Université de Liège. Belgique.
- Klock, U.; Muniz, G.I.B.; Hernandez, J.A. (2005). Química da Madeira. 3. ed. rev. Curitiba: Universidade Federal do Paraná.
- Kpalo, S. Y.; Zainuddin, M. F.; Manaf, L. A.; Roslan, A. M. (2020) <u>Production and Characterization of Hybrid Briquettes from Corncobs and Oil Palm Trunk Bark under a Low Pressure Densification Technique</u>. 12, n. 6, p. 2468.
- Lourinho, G. (2012). <u>Avaliação Do Potencial Energético Em Biomassa Do Alto Alentejo.</u>
 Departamento de Tecnologia e Design, p.87.
- Machado, G. O; Christoforo, A. L.; Araújo V. A.; Lahr, F. A. R. (2016). <u>Química da</u>
 <u>madeira no contexto energético.</u> Livro. Universidade Federal São Carlos. Brasil.
- Magalhães, A. S.; Silva, T. M. M.; Castro, V. G. (2019). <u>Produção e caracterização de briquetes a partir de resíduos sólidos e prensagem</u>. Semi-manual, Advances, Forestry Science, v. 6, n. 3, p. 705-710.
- Magalhães, T. (2018). <u>Inventario Florestal Nacional</u>. DNAF, Maputo, Moçambique. p.90.
- Manjate, E. A. (2023). <u>Produção e caracterização dos briquetes de biomassa florestal:</u>
 <u>Serradura de Umbila, Chanfuta e Pinho</u>. Tese de Licenciatura. FENG. Universidade Eduardo Mondlane. Maputo.
- Marafon A.C.; Santiago, A. D.; Amaral, A. F. C.; Bierhals, A. N.; Paiva, H. L.; Guimaraes,
 A. (2016) <u>Uso da Biomassa para geração de energia</u>. 1 ed. Aracaju, SE: Embrapa tabuleiros costeiros.
- Marreiro, H. M. P. (2021). <u>Avaliação Energética E Otimização Da Produção De Briquetes</u>
 <u>A Partir Do Resíduo Da Madeira Da Poda E Da Cama De Ave</u>. Dissertação. Universidade
 Federal da Paraiba. Brasil.

- Marrozzi, C. R. B. (2012). <u>Caracterização de resíduos agro-industriais e florestais visando</u>
 <u>a briquetagem</u>. Universidade Federal do Espirito Santo.
- Marzoli, A. (2007). <u>Inventário florestal nacional</u>. DNTF, Maputo, Moçambique.
- Massuque, J., Z. (2017). <u>Potencial Energético De Espécies Procedentes De Plano De</u>
 <u>Manejo Florestal Sustentado No Norte De Moçambique</u>. P.50.
- Mckendry, P. (2002). <u>Energy production from biomass (part 1): overview of biomass.</u> Bioresource Technology, Volume 83, n. 1, 2002, p. 37-46.
- MITADER (2016). <u>Directrizes do inventário florestal nacional</u>. MITADER, Maputo, Moçambique.
- MITADER (2016). <u>EstratégiaNacional para a Redução de Emissões de Desmatamento e</u>
 <u>Degradação Florestal, Conservação de Florestas e Aumento de Reservas de Carbono</u>
 <u>Através de Florestas (REDD+) 2016-2030</u>. MITADER, Maputo, Moçambique.
- MITADER (2018). <u>Desflorestamento em Moçambique</u> (2003 2016) MITADER.
 Maputo.
- MITADER (2019). <u>Agenda Estratégica 2019 -2035 E Programa Nacional De Florestas</u>
 <u>Moçambique.</u> Direcção Nacional de Florestas. Ministério da Terra Ambiente e Desenvolvimento Rural. Moçambique.
- Moçambique. Boletim da República (2020). Resolução nº 23/2020. Aprova a Política
 Florestal e Estratégia da sua Implementação.. Publicação Oficial da República de
 Moçambique. Maputo, 27 de março de 2020. 1ª série, Número 60.
- Mogeia, S. S. L. S. (2019). <u>Avaliação do teor de cinza da madeira de cinco espécies de</u>
 Eucalyptus sp. de diferentes idades e proveniência. Dissertação de Mestrado. FAEF.
 Universidade Eduardo Mondlane. Maputo.
- Mogeia, S.; Manhiça, A. A.; & Egas, A. F. (2023). <u>Wood ash content variation in Eucalyptus grandis clones in Mozambique</u>. Finnish society of forest science. Silva fennica. avaliable in https://doi.org/10.142114/sf.10767, p.64.
- Mussana, A. F. (2018). <u>Influência das classes diamétricas na variação das propriedades</u>
 <u>físicomecânicas de Brachystegia spiciformis e Julbernardia globiflora nos distritos de</u>
 <u>Maganja da Costa e Mocubela (Zambézia).</u> Dissertação de Mestrado. FAEF. Universidade
 Eduardo Mondlane. Maputo.

- Nakashima, G. T.; Martins, M. P, Da Silva, D. A.; Chrisostomo, W.; Yamaji, F. M. (2014).
 Aproveitamento de Resíduos Vegetais Para a Produção de Briquetes, Revista Brasileira de Ciências Ambientais, v. 34, n. 3, p. 22-29.
- Nogueira, M.; Ballarin, A. W. (2008). Efeito da idade na qualificação mecânica da madeira serrada de *Eucalyptus sp.* com uso de ensaios não-destrutivos. Energia na Agricultura, Botucatu, v. 23, n. 3, p. 74-94.
- Onukak, I. E.; Mohammed-Dabo, I. A.; Ameh A. O.; Okuduwa, S. I. R.; Fasanya, O. O. (2017). Production and characterization of biomass briquettes from tannery solid waste, Recycling, v. 1, n. 2, p.1-19.
- Orwa, C□; Mutua, A□; Kindt, R□; Jamnadass□ R□; Simons□ A. (2009). <u>Agroforestree</u>
 <u>Database: a tree reference and selection guide version 4.0</u> (http://www.worldagrofore stry.org/af/treedb/).
- Oshiro, T. L., (2016), <u>Produção e Caracterização de Briquetes Produzidos com Resíduos</u>
 <u>Lignocelulosicos</u>, Trabalho de Conclusão de curso, Universidade Tecnológica do Paraná,
 Brasil.
- Paula, L. E. R. (2010). <u>Produção e avaliação de briquetes de resíduos</u>
 <u>lignocelulósicos.</u>Dissertação (Mestrado em Ciências e Tecnologia da Madeira) Departamento de Ciências Florestais, Universidade Federal de Lavras, Lavras.
- Pedrazzi, C., Dick, G.; Coldebella, R.; Gentil, M.; Giesbrecht, B. R.; Rosa, R. C. (2019).
 Química da madeira, Universidade Federal de Santa Maria, Centro de Ciências Rurais,
 Departamento de Ciências Florestais, ed. 1. ISSN 1984-6118, p. 69.
- Pereira, F. A.; Carneiro, A. C. O.; Vital, B. R.; Lúcia, R. M. D.; Júnior, W. P.; Bianche J. J. (2009). Propriedades físico-químicas de briquetes aglutinados com adesivo de silicato de sódio. Floresta e Ambiente. v.16, n.1, p. 23 29.
- Pimentel-Gomes, F. (1987). <u>Curso de estatística experimental</u>. Livraria nobel. 12.ed. Piracicaba. Brasil. p.467.
- Protásio, T. P.; Alves, I. C. N.; Trugilho, P. F.; Silva, V. O.; Baliza, A. E. R. (2011).
 <u>Compactação de biomassa vegetal visando à produção de biocombustíveis sólidos.</u>
 Pesquisa florestal brasileira, v. 31, n. 68, p. 273-283.

- Quirino, W.F. 1991. <u>Briquetagem de resíduos ligno-celulosico</u>. <u>Circular técnica do Laboratório de Produtos Florestais</u>-LPF. Brasília, p. 69-80.
- Quirino, W.F.; Vale A. T.; Andrade, A. P. A.; Abreu, V. L. S.; Azevedo, A. C. S. (2005).
 Poder calorifico da madeira e de resíduos lignocelulosicos. Biomassa e energia, Brasília, V. 1, n. 89, p. 100-106..
- Ribeiro, N.; Sitoe A.; Guedes B.; Staiss C. (2002) <u>Manual de silvicultura tropical</u>. FAO, Maputo, Moçambique.
- Rodrigues, V. A. J. (2010). <u>Valorização energética de Iodo biológico da indústria de polpa celulósica através da briquetagem</u>. Dissertação (Mestrado em Ciência Florestal) Universidade Federal de Viçosa- MG.
- Sampaio, J. R.; Carneiro, A.C. O; Jacovine, L. A. G; Vilas Boas, M. A.; Vital, B. R. (2010).
 Determinação dos parâmetros de produção de briquetes *Eucalyptus sp.* In: Encontro Brasileiro Em medeiras e Em Estruturas da Madeira, Lavras. Anais. indi grafica editora Ltda
- Santos, R. C. (2010). <u>Parâmetros de qualidade da madeira e do carvão vegetal de clones de Eucalipto.</u> Tese de Doutoramento. Universidade Federal de Lavras. Lavras. Minas gerais. Brasil. p.159.
- Santos, R. C.; Carneiro, A. C. O.; Castro, R. V. O.; Pimenta, A. S.; Castro, A. E. N. M.;
 Marinho, I. V.; Villas Boas, M. A. (2015). <u>Potencial de briquetagem de resíduos sólidos</u>
 <u>florestais da região de Seridó, no Rio Grande do Norte.</u> Pesquisa Florestal Brasileira.
 Colombo.
- Seifert, M. E. B. (2011). <u>Gestão Ambiental: instrumentos, esferas de ação e educação ambiental,</u> Atlas, São Paulo.
- Silva, C. A.(2007). <u>Estudo técnico-econômico da compactação de resíduos madeireiros para fins energéticos.</u> (Dissertação de Mestrado) Campinas, SP. UNESC, p.68.
- Silva, D. A.; Nakashima, G. T.; Barros, J. L.; DA Roz, A. L.; Yamaji, F. M. (2015).
 Caracterização de biomassas para a briquetagem, Revista Floresta, p. 713 722.
- Souza, F. 2014. <u>Avaliação da qualidade de briquetes produzidos com seis biomassas</u> agroflorestais por método não destrutivos. Universidade de Brasília. Faculdade de Tecnologia-Departamento de Engenharia Florestal.

- Souza, F.; Vale, A.T. (2016). <u>Densidade energética de briquetes de biomassa lignocelulósica e sua relação com os parâmetros de briquetagem</u>. Pesquisa Florestal Brasileira. Universidade de Brasília.
- Trajano, H. L.; Wyman, C. E. (2013). <u>Fundamentals of biomass pretreatment at low pH</u>.
 Aqueous pretreatment of plant biomass for biological and chemical conversion to fuels and chemicals, p.103-128.
- Trugilho, P., F.; Lima, J., T.; Mendes, L., M. (1996). <u>Influência Da Idade Nas Características Físicas Químicas E Anatômicas Da Madeira De Eucalyptus saligna</u>.
 Revista Cerne, Lavras, v. 2.
- Vieira, A. C. (2012). <u>Caracterização da biomassa proveniente de resíduos agrícolas</u>;
 dissertação (mestrado). Universidade Estadual do Oeste do Paraná. Cascavel, PR, p. 20-25.

7. ANEXOS

Anexo 7.1. Anova para o efeito da região do lenho sobre a teor de cinza

	Number of obs = Root MSE =	15 .365103	R-square Adj R-sq		
Source	Partial SS	df	MS	F	Prob>F
Model	.00289335	2	.00144667	0.01	0.9892
trat	.00289335	2	.00144667	0.01	0.9892
Residual	1.5996002	12	.13330002		
Total	1.6024935	14	.11446382		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	15	0.93175	1.323	0.554	0.28978

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 5.04
 Prob > chi2 = 0.0248

Anexo 7.2. Efeito da região do lenho sobre a densidade aparente de briquetes de serradura de *Julbernardia globiflora*

Anexo 7.2.1. Anova para o efeito da região do lenho sobre a densidade aparente de briquetes de serradura de *Julbernardia globiflora* a temperatura de 120°C e pressão de 12 Mpa

	Number of obs = Root MSE =	9 4.2e+07	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	9.214e+14	2 4	.607e+14	0.27	0.7757
trat	9.214e+14	2 4	.607e+14	0.27	0.7757
Residual	1.043e+16	6 1	.738e+15		
Total	1.135e+16	8 1	.419e+15		

Variable	Obs	W	V	Z	Prob>z
erro	9	0.94541	0.802	-0.358	0.63988

reusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 0.68
 Prob > chi2 = 0.4087

Anexo 7.2.2. Anova para o efeito da região do lenho sobre a densidade aparente de briquetes de serradura de *Julbernardia globiflora* a temperatura de 130°C e pressão de 12 Mpa

	Number of obs = Root MSE =	9 2.0e+07	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	9.758e+14	2 4	.879e+14	1.24	0.3549
trat	9.758e+14	2 4	.879e+14	1.24	0.3549
Residual	2.366e+15	6 3	.944e+14		
Total	3.342e+15	8 4	.178e+14		

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 0.20
 Prob > chi2 = 0.6534

Variable	Obs	W	V	Z	Prob>z
erro	9	0.95980	0.591	-0.828	0.79621

Anexo 7.2.3. Anova para o efeito da região do lenho sobre a densidade aparente de briquetes de serradura de *Julbernardia globiflora* a temperatura de 140°C e pressão de 12 Mpa

	Number of obs = Root MSE =	9 3.5e+07	R-square Adj R-sq		
Source	Partial SS	df	MS	F	Prob>F
Model	1.924e+15	2 9	.618e+14	0.77	0.5051
trat	1.924e+15	2 9	.618e+14	0.77	0.5051
Residual	7.522e+15	6 1	.254e+15		
Total	9.446e+15	8 1	.181e+15		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	9	0.84718	2.245	1.481	0.06937

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 1.78
 Prob > chi2 = 0.1820

Anexo 7.2.4. Anova para o efeito da região do lenho sobre a densidade aparente de briquetes de serradura de *Julbernardia globiflora* a temperatura de 150°C e pressão de 12 Mpa

1	Number of obs =	9	R-square		
1	Root MSE =	.078355	Adj R-sq	uared =	-0.1721
Source	Partial SS	df	MS	F	Prob>F
Model	.00506873	2 .0	0253437	0.41	0.6793
trat	.00506873	2 .0	0253437	0.41	0.6793
Residual	.03683687	6 .0	0613948		
Total	.0419056	8 .	0052382		

Variable	Obs	W	V	Z	Prob>z
erro	9	0.88134	1.743	0.985	0.16221

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 0.28
 Prob > chi2 = 0.5971

Anexo 7.3. Efeito da região do lenho sobre a resistência mecânica de briquetes de serradura de *Julbernardia globiflora*

Anexo 7.3.1. Anova para o efeito da região do lenho sobre a resistência mecânica de briquetes de serradura de *Julbernardia globiflora* a temperatura de 120°C

1	Number of obs =	9	R-squared	i =	0.4970
I	Root MSE =	.700521	Adj R-squ	uared =	0.3294
Source	Partial SS	df	MS	F	Prob>F
Model	2.9096744	2 1	.4548372	2.96	0.1272
trat	2.9096744	2 1	.4548372	2.96	0.1272
Residual	2.9443745	6 .	49072908		
Total	5.8540489	8 .	73175611		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	9	0.90075	1.458	0.654	0.25640

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
    Ho: Constant variance
    Variables: erro

chi2(1) = 2.53
    Prob > chi2 = 0.1116
```

Anexo 7.3.2. Anova para o efeito da região do lenho sobre a resistência mecânica de briquetes de serradura de *Julbernardia globiflora* a temperatura de 130°C

	Number of obs = Root MSE =	9.308118	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	1.8499907	2 .	92499534	9.74	0.0130
trat	1.8499907	2 .	92499534	9.74	0.0130
Residual	.56962015	6 .	09493669		
Total	2.4196108	8 .	30245135		

Variable	Obs	W	V	Z	Prob>z
erro	9	0.96811	0.469	-1.166	0.87812

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
   Ho: Constant variance
   Variables: fitted values of res

chi2(1) = 2.40
   Prob > chi2 = 0.1213
```

Teste de tukey

	Margin	Std. Err.	Tukey Groups
trat			
1	1.426794	.177892	
2	2.44415	.177892	A
3	2.321134	.177892	A

Note: Margins sharing a letter in the group label are not significantly different at the 5% level.

Anexo 7.3.3. Anova para o efeito da região do lenho sobre a resistência mecânica de briquetes de serradura de *Julbernardia globiflora* a temperatura de 140°C

1	Number of obs =	9	R-squared	=	0.5794
1	Root MSE =	.325446	Adj R-squa	ared =	0.4392
Source	Partial SS	df	MS	F	Prob>F
Model	.8755303	2 .4	3776515	4.13	0.0744
trat	.8755303	2 .4	3776515	4.13	0.0744
Residual	.63548888	6 .1	0591481		
Total	1.5110192	8 .	1888774		

Variable	Obs	W	V	Z	Prob>z
erro	9	0.94455	0.815	-0.333	0.63051

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

 chi2(1) = 1.43
 Prob > chi2 = 0.2322

Anexo 7.3.4. Anova para o efeito da região do lenho sobre a resistência mecânica de briquetes de serradura de *Julbernardia globiflora* a temperatura de 150°C

	Number of obs = Root MSE =	9 .153261	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	.17612246	2 .0	08806123	3.75	0.0878
trat	.17612246	2 .0	08806123	3.75	0.0878
Residual	.14093381	6 .0)2348897		
Total	.31705626	8 .()3963203		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	9	0.93278	0.988	-0.021	0.50826

```
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

chi2(1) = 0.69
Prob > chi2 = 0.4052
```

Anexo 7.4. Efeito da temperatura de compactação sobre a densidade aparente dos briquetes

Anexo 7.4.1. Anova para o efeito da temperatura de compactação sobre a densidade aparente para os briquetes de cerne

	Number of obs = Root MSE =	12.070009	1 1 1		
Source	Partial SS	df	MS	F	Prob>F
Model	.00637902	3	.00212634	0.43	0.7347
trat	.00637902	3	.00212634	0.43	0.7347
Residual	.03921018	8	.00490127		
Total	.0455892	11	.00414447		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	12	0.88934	1.849	1.197	0.11556

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 0.45
 Prob > chi2 = 0.5032

Anexo 7.4.2. Anova para o efeito da temperatura de compactação sobre a densidade aparente para os briquetes de borne

1	Number of obs =	12	R-squared	= £	0.1796
I	Root MSE =	.040465	Adj R-sq	uared =	-0.1281
Source	Partial SS	df	MS	F	Prob>F
Model	.00286681	3	.0009556	0.58	0.6423
trat	.00286681	3	.0009556	0.58	0.6423
Residual	.0130996	8.	00163745		
Total	.01596641	11 .	00145149		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	12	0.94650	0.894	-0.219	0.58650

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

chi2(1) = 0.09 Prob > chi2 = 0.7686

Anexo 7.4.3. Anova para o efeito da temperatura de compactação sobre a densidade aparente para os briquetes de mistura

	Number of obs = Root MSE =	12 .024612	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	.00008963	3.	00002988	0.05	0.9845
trat	.00008963	3.	00002988	0.05	0.9845
Residual	.00484607	8 .	00060576		
Total	.0049357	11	.0004487		

Variable 	Obs	W	V	Z	Prob>z
erro	12	0.95073	0.823	-0.379	0.64763

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of dens

chi2(1) = 3.83 Prob > chi2 = 0.0502

Anexo 7.5. Efeito da temperatura de compactação na resistência mecânica dos briquetes

Anexo 7.5.1. Anova para o efeito da temperatura de compactação sobre a resistência mecânica de briquetes de cerne

1	Number of obs =	12	R-squared	i =	0.6897
I	Root MSE =	.335557	Adj R-sqı	uared =	0.5733
Source	Partial SS	df	MS	F	Prob>F
Model	2.0018013	3.	66726709	5.93	0.0198
trat	2.0018013	3.	66726709	5.93	0.0198
Residual	.90079028	8 .	11259879		
Total	2.9025915	11 .	26387196		

Shapiro-Wilk W test for normal data

Variable	Obs	M	V	Z	Prob>z
erro	12	0.94101	0.986	-0.028	0.51126

	·		
	Margin	Std. Err.	Tukey Groups
trat			
1	1.378968	.1937342	A
2	1.426794	.1937342	AB
3	2.117339	.1937342	AB
4	2.300148	.1937342	В

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

chi2(1) = 0.88 Prob > chi2 = 0.3495

Anexo 7.5.2. Efeito da temperatura de compactação sobre a resistência mecânica de briquetes de borne

	Number of obs = Root MSE =	.566152	R-squared Adj R-squ		0.2511
Source	Partial SS	df	MS	F	Prob>F
Model	.85959205	3	.28653068	0.89	0.4850
trat	.85959205	3 .	.28653068	0.89	0.4850
Residual	2.5642283	8 .	.32052853		
Total	3.4238203	11	.31125639		

. swilk erro

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	12	0.93888	1.021	0.041	0.48369

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

Anexo 7.5.3. Efeito da temperatura de compactação sobre a resistência mecânica de briquetes de Mistura

	Number of obs = Root MSE =	12 .38559	R-squared Adj R-squ		0.1121
Source	Partial SS	df	MS	F	Prob>F
Model	.15015305	3 .	05005102	0.34	0.7996
trat	.15015305	3 .	05005102	0.34	0.7996
Residual	1.1894366	8 .	14867958		
Total	1.3395896	11 .	12178088		

Variable	Obs	W	V	Z	Prob>z
erro	12	0.91602	1.403	0.660	0.25461

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 4.14
 Prob > chi2 = 0.0420

Anexo 7. 6. Efeito da pressão de compactação sobre a densidade aparente dos briquetes de cerne

Anexo 7.6.1. Anova para o efeito da pressão de compactação sobre a densidade aparente dos briquetes de cerne a temperatura de 120°C

	1	Number of obs =	6	R-square	d =	0.3926
	Ι	Root MSE =	.012019	Adj R-sq	uared =	0.2407
S (ource	Partial SS	df	MS	F	Prob>F
1	Model	.00037344	1 .	.00037344	2.59	0.1832
	trat	.00037344	1	.00037344	2.59	0.1832
Res	idual	.00057784	4	.00014446		
	Total	.00095128	5 .	.00019026		

Variable	Obs	M	V	z	Prob>z
erro	6	0.96523	0.431	-1.076	0.85899

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of dens

chi2(1) = 1.43 Prob > chi2 = 0.2320

Anexo 7.6.2. Anova para o efeito da pressão de compactação sobre a densidade aparente dos briquetes de cerne a temperatura de 130°C

	Number of obs = Root MSE =	.0386	R-squared Adj R-squ		
Source	Partial SS	df	MS	F	Prob>F
Model	.00125215	1 .	00125215	0.84	0.4112
trat	.00125215	1 .	00125215	0.84	0.4112
Residual	.00595998	4 .	00148999		
Total	.00721212	5 .	00144242		

. swilk erro

Shapiro-Wilk W test for normal data

Variable	Obs	M	V	Z	Prob>z
erro	6	0.97635	0.293	-1.491	0.93203

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity

Ho: Constant variance

Variables: fitted values of dens

chi2(1) = 0.98Prob > chi2 = 0.3229

Anexo 7.6.3. Anova para o efeito da pressão de compactação sobre a densidade aparente dos briquetes de cerne a temperatura de 140°C

	Number of obs = Root MSE =	.030342	R-square Adj R-sq		
Source	Partial SS	df	MS	F	Prob>F
Model	.00010195	1 .	00010195	0.11	0.7560
trat	.00010195	1 .	00010195	0.11	0.7560
Residual	.00368252	4 .	00092063		
Total	.00378447	5 .	00075689		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	6	0.92321	0.951	-0.072	0.52878

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity Ho: Constant variance Variables: fitted values of dens

> chi2(1) = 1.85 Prob > chi2 = 0.1735

Anexo 7.6.4. Anova para o efeito da pressão de compactação sobre a densidade aparente dos briquetes de cerne a temperatura de 150°C

1	Number of obs =	6	R-square	ed =	0.0087
I	Root MSE =	.094912	Adj R-sc	<pre>fuared =</pre>	-0.2392
Source	Partial SS	df 	MS	F	Prob>F
Model	.00031445	1	.00031445	0.03	0.8609
trat	.00031445	1	.00031445	0.03	0.8609
Residual	.0360332	4	.0090083		
Total	.03634765	5	.00726953		

. swilk erro

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	6	0.96060	0.488	-0.932	0.82436

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: fitted values of dens

 chi2(1) = 2.41
 Prob > chi2 = 0.1208

Anexo 7.7. Efeito da pressão de compactação sobre a resistência mecânica dos briquetes de cerne

Anexo 7.7.1. Anova para o efeito da pressão de compactação sobre a resistência mecânica dos briquetes de cerne a temperatura de 120°C

	Number of obs = Root MSE =	6 2.5e+08	R-squared Adj R-squ		0.3898
Source	Partial SS	df	MS	F	Prob>F
Model	1.564e+17	1	1.564e+17	2.55	0.1852
trat	1.564e+17	1	1.564e+17	2.55	0.1852
Residual	2.448e+17	4	6.120e+16		
Total	4.012e+17	5	8.023e+16		

Shapiro-Wilk W test for normal data

Variable	Obs	W	V	Z	Prob>z
erro	6	0.88123	1.471	0.598	0.27476

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
 Ho: Constant variance
 Variables: erro

chi2(1) = 2.43
 Prob > chi2 = 0.1190

Anexo 7.7.2. Anova para o efeito da pressão de compactação sobre a resistência mecânica dos briquetes de cerne a temperatura de 130°C

1	Number of obs =	6	R-square	d =	0.4349
1	Root MSE =	.477171	Adj R-sq	uared =	0.2936
Source	Partial SS	df	MS	F	Prob>F
Model	.70090967	1 .	70090967	3.08	0.1542
trat	.70090967	1 .	70090967	3.08	0.1542
Residual	.91076765	4 .	22769191		
Total	1.6116773	5.	32233547		

Variable	Obs	M	V	Z	Prob>z
erro	6	0.93670	0.784	-0.339	0.63276

. hettest

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: fitted values of res

chi2(1) = 0.05 Prob > chi2 = 0.8228

Anexo 7.7.3. Anova para o efeito da pressão de compactação sobre a resistência mecânica dos briquetes de cerne a temperatura de 140°C

	Number of obs = Root MSE =	.217854	R-squared Adj R-squ		0.0201
Source	Partial SS	df	MS	F	Prob>F
Model	.00390388	1 .	.00390388	0.08	0.7885
trat	.00390388	1 .	.00390388	0.08	0.7885
Residual	.18984204	4 .	04746051		
Total	.19374592	5 .	03874918		

Variable	Obs	W	V	Z	Prob>z
erro	6	0.88882	1.377	0.490	0.31205

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

chi2(1) = 0.22Prob > chi2 = 0.6394

Anexo 7.7.4. Anova para o efeito da pressão de compactação sobre a resistência mecânica dos briquetes de cerne a temperatura de 150°C

1	Number of obs =	6	R-squared	= £	0.0040
F	Root MSE =	.19606	Adj R-squ	uared =	-0.2449
Source	Partial SS	df	MS	F	Prob>F
Model	.00062481	1 .	.00062481	0.02	0.9047
trat	.00062481	1 .	.00062481	0.02	0.9047
Residual	.15375783	4 .	.03843946		
Total	.15438264	5 .	.03087653		

Shapiro-Wilk W test for normal data

Variable	Obs	M	V	Z	Prob>z
erro	6	0.94543	0.676	-0.533	0.70315

. hettest erro

Breusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
Variables: erro

chi2(1) = 0.00Prob > chi2 = 0.9519